1 | Novel Protonic Conductor SrLa2Sc2O7 with Layered Structure for Electrochemical Devices. 2022;15:8867 doi: 10.3390/ma15248867 |
2 | Classification of Solid Oxide Fuel Cells. 2022;12:1059 doi: 10.3390/nano12071059 |
3 | Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells. 2022;38:1268 doi: 10.1007/s40242-022-2223-6 |
4 | Ni/NiO Exsolved Perovskite La0.2Sr0.7Ti0.9Ni0.1O3−δ for Semiconductor-Ionic Fuel Cells: Roles of Electrocatalytic Activity and Physical Junctions. 2023;15:870 doi: 10.1021/acsami.2c16002 |
5 | Effects of Ceria on the Oxygen Reduction Activity and Thermal Cycling Stability of BaCo0.4Fe0.4Zr0.1Y0.1O3−δ Cathode for Solid Oxide Fuel Cells. 2022;5:14391 doi: 10.1021/acsaem.2c02949 |
6 | Studies on Bloom Energy Server. 2022;15:214 doi: 10.2174/2405520415666220729122436 |
7 | Facile Fabrication of Bifunctional Hydrogen Catalytic Electrodes for Long-Life Nickel–Hydrogen Gas Batteries. 2022;22:1741 doi: 10.1021/acs.nanolett.1c04940 |
8 | LSCF–WO3 semiconductor composite electrolytes for low-temperature solid oxide fuel cells. 2022;12:30557 doi: 10.1039/D2RA05665H |
9 | Lithium zirconate coated LiNi0.8Co0.15Al0.05O2 as a high-performance electrode material for advanced fuel cells. 2022;48:17076 doi: 10.1016/j.ceramint.2022.02.263 |
10 | Development of a Core–Shell Heterojunction TiO2/SrTiO3Electrolyte with Improved Ionic Conductivity. 2022;23: doi: 10.1002/cphc.202200170 |
11 | Built-in Electric Field for Efficient Charge Separation and Ionic Transport in LiCoO2/SnO2 Semiconductor Junction Fuel Cells. 2022;5:12513 doi: 10.1021/acsaem.2c02152 |