Hot Keywords
Batteries Solar cell Fuel cell Supercapacitors Lithium batteries Lithium-ion batteries Electrode Water splitting Catalysis

Top
The paper's citation list
No.The paper's citation list
1Recent Advances in Single‐Junction Organic Solar Cells. 2022;61: doi: 10.1002/anie.202209021
2Molecular engineering of Y‐series acceptors for nonfullerene organic solar cells. 2022;2:591 doi: 10.1002/sus2.82
3Enhancing Efficiency of Organic Solar Cells with Alkyl Diamines Doped PEDOT: PSS. 2023;656 doi: 10.1021/acsmaterialslett.2c01078
4Truxene π-Expanded BODIPY Star-Shaped Molecules as Acceptors for Non-Fullerene Solar Cells with over 13% Efficiency. 2022;5:2279 doi: 10.1021/acsaem.1c03781
5Over 16% efficiency all-polymer solar cells by sequential deposition. 2022;65:1157 doi: 10.1007/s11426-022-1247-1
6Recent progress in non-fused ring electron acceptors for high performance organic solar cells. 2023; doi: 10.1039/D2IM00037G
7Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells. 2023; doi: 10.1039/D2TA09500A
8 Enhanced Performance via π‐Bridge Alteration of Porphyrin‐Based Donors for All‐Small‐Molecule Organic Solar Cells . 2023; doi: 10.1002/cjoc.202200652
9Crystal structures in state-of-the-art non-fullerene electron acceptors. 2023;11:481 doi: 10.1039/D2TA08367A
10Alkynyl BODIPY-Core Bridged Perylene Diimide Star-Shaped Nonfullerene Acceptors for Efficient Polymer Solar Cells. 2022;5:15624 doi: 10.1021/acsaem.2c03200
11Non‐Fused Polymerized Small Molecular Acceptors for Efficient All‐Polymer Solar Cells. 2022;6:2101034 doi: 10.1002/solr.202101034
12Solvent-Free Mechanochemical Dense Pore Filling Yields CPO-27/MOF-74 Metal–Organic Frameworks with High Anhydrous and Water-Assisted Proton Conductivity. 2023; doi: 10.1021/acsaem.2c03518
13Estimating donor:acceptor compatibility for polymer solar cells through nonfused-ring acceptors with benzoxadiazole core and different halogenated terminal groups. 2022;46:21324 doi: 10.1039/D2NJ04513C
14Recent progress in low‐cost noncovalently fused‐ring electron acceptors for organic solar cells. 2022;3: doi: 10.1002/agt2.281
15A New Noncovalently Fused‐Ring Electron Acceptor Based on 3,7‐Dialkyloxybenzo[1,2‐b:4,5‐b']dithiophene for Low‐Cost and High‐Performance Organic Solar Cells. 2022;43:2200085 doi: 10.1002/marc.202200085
16Recent Advances in Single‐Junction Organic Solar Cells. 2022;134: doi: 10.1002/ange.202209021
17Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics. 2022;10:20035 doi: 10.1039/D2TA02604J
18New Wide Bandgap Conjugated D‐A Copolymers Based on BDT or NDT Donor Unit and Anthra[1,2‐b:4,3,bʹ:6,7‐cʺ]trithiophene‐8‐12‐dione Acceptor for Fullerene‐Free Polymer Solar Cells. 2022;223:2200168 doi: 10.1002/macp.202200168
19Unfused-ring Acceptors with Dithienobenzotriazole Core for Efficient Organic Solar Cells. 2022;40:1586 doi: 10.1007/s10118-022-2825-y
20Fused‐ring induced end‐on orientation in conjugated molecular dyads toward efficient single‐component organic solar cells. 2022; doi: 10.1002/agt2.279
21Nonfused Ring Electron Acceptors for Efficient Organic Solar Cells Enabled by Multiple Intramolecular Conformational Locks. 2022;5:5136 doi: 10.1021/acsaem.2c00475
22Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. 2022;65:2604 doi: 10.1007/s11426-022-1449-4
23Recent advances of non‐fullerene organic solar cells: From materials and morphology to devices and applications. 2023;5: doi: 10.1002/eom2.12281
24Ambipolar Behavior of a Cu(II)–Porphyrin Derivative in Ternary Organic Solar Cells. 2023;2201046 doi: 10.1002/solr.202201046
25Unsymmetrically Chlorinated Non‐Fused Electron Acceptor Leads to High‐Efficiency and Stable Organic Solar Cells. 2023;135: doi: 10.1002/ange.202214931
26 The Subtle Structure Modulation of A 2 ‐A 1 ‐D‐A 1 ‐A 2 Type Nonfullerene Acceptors Extends the Photoelectric Response for High‐Voltage Organic Photovoltaic Cells . 2022;43:2100810 doi: 10.1002/marc.202100810
27 The Effect of Silicon Substitution in Indacenodithiophene‐Based A 2 ‐A 1 ‐D‐A 1 ‐A 2 ‐Type Nonfullerene Acceptors on the Performance of High‐Voltage Organic Solar Cells . 2022;6:2200750 doi: 10.1002/solr.202200750
28Self‐assembledmonolayers for interface engineering in polymer solar cells. 2022;60:2175 doi: 10.1002/pol.20210938
29Engineering of A-π-D-π-A system based non-fullerene acceptors to enhance the photovoltaic properties of organic solar cells; A DFT approach. 2022;801:139750 doi: 10.1016/j.cplett.2022.139750
30Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells. 2022;40:905 doi: 10.1007/s10118-022-2721-5
31Benzotriazole‐Based Nonfused Ring Acceptors for Efficient and Thermally Stable Organic Solar Cells. 2022;43:2200530 doi: 10.1002/marc.202200530
32Noncovalent Interactions Induced by Fluorination of the Central Core Improve the Photovoltaic Performance of A-D-A′-D-A-Type Nonfused Ring Acceptors. 2022;5:7710 doi: 10.1021/acsaem.2c01179
33Isomerization of Noncovalently Conformational Lock in Nonfused Electron Acceptor toward Efficient Organic Solar Cells. 2022;5:10224 doi: 10.1021/acsaem.2c01945
34Wide Bandgap Conjugated Polymers Based on Difluorobenzoxadiazole for Efficient Non‐Fullerene Organic Solar Cells. 2022;43:2200591 doi: 10.1002/marc.202200591
35Unsymmetrically Chlorinated Non‐Fused Electron Acceptor Leads to High‐Efficiency and Stable Organic Solar Cells. 2023;62: doi: 10.1002/anie.202214931
36Low energy loss (0.42 eV) and efficiency over 15% enabled by non-fullerene acceptors containing N-bis(trifluoromethyl)phenylbenzotriazole as the core in binary solar cells. 2022;10:13174 doi: 10.1039/D2TC02289C
© 2016-2023 OAE Publishing Inc., except certain content provided by third parties