Hot Keywords
Batteries Solar cell Fuel cell Supercapacitors Lithium batteries Lithium-ion batteries Electrode Water splitting Catalysis

The paper's citation list
No.The paper's citation list
1Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. 2022;9:011401 doi: 10.1063/5.0074327
2Development of a lithium-oxygen battery with an improved redox mediator applicable to gel polymer electrolytes. 2023;117:220 doi: 10.1016/j.jiec.2022.10.007
3Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere. 2022;13:132 doi: 10.3390/nano13010132
4From Mosaic-Type to Heterojunction-Type SEI Films on the Li Anode: Decoupling Chemical and Electrochemical Degradation of the Electrolyte. 2022;10:9232 doi: 10.1021/acssuschemeng.2c02668
5Formation/Decomposition of Li2O2 Induced by Porous NiCeOx Nanorod Catalysts in Aprotic Lithium–Oxygen Batteries. 2022;14:16214 doi: 10.1021/acsami.2c00545
6A Review on Electrode Materials of Fast‐Charging Lithium‐Ion Batteries. 2022;22: doi: 10.1002/tcr.202200127
7Synergy between copper single atoms and cobalt particles for high performance frigostable aqueous Al-air batteries. 2023;611:155779 doi: 10.1016/j.apsusc.2022.155779
8A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries. 2022;74:309 doi: 10.1016/j.jechem.2022.07.029
9 Facile Construction of Zn‐Doped Mn 3 O 4 −MnO 2 Vertical Nanosheets for Aqueous Zinc‐Ion Battery Cathodes . 2022;9: doi: 10.1002/celc.202200750
10Designing a photo-assisted Co-C3N4 cathode for high performance Li-O2 batteries. 2022; doi: 10.1007/s12274-022-5300-8
11Ion Flux Self-Regulation Strategy with a Volume-Responsive Separator for Lithium Metal Batteries. 2022;14:51931 doi: 10.1021/acsami.2c15101
12Expanded K0.37Fe0.04Al0.07Mn0.89O2 Layered Material as a High-Performance Cathode in Sodium-Ion Batteries. 2022;15:5659 doi: 10.3390/en15155659
13Li2O2Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li–O2Batteries. 2022;6:2101280 doi: 10.1002/smtd.202101280
14Comparative Study of the Electrochemical Performance of Different Separators in Aprotic Li–O2 Batteries. 2022;36:4609 doi: 10.1021/acs.energyfuels.2c00651
15Ethyl Viologen as a Superoxide Quencher to Enhance the Oxygen Reduction Reaction in Li–O2 Batteries. 2022;5:9040 doi: 10.1021/acsaem.2c01501
16True Reaction Sites on Discharge in Li–O2 Batteries. 2022;144:807 doi: 10.1021/jacs.1c09916
17 Adjusting the 3d Orbital Occupation of Ti in Ti 3 C 2 MXene via Nitrogen Doping to Boost Oxygen Electrode Reactions in Li–O 2 Battery . 2022;2206611 doi: 10.1002/smll.202206611
18RuO2-Incorporated Co3O4 Nanoneedles Grown on Carbon Cloth as Binder-Free Integrated Cathodes for Tuning Favorable Li2O2 Formation. 2023;15:1401 doi: 10.1021/acsami.2c19399
© 2016-2023 OAE Publishing Inc., except certain content provided by third parties