1 | Stable cycling of high nickel Li-metal batteries with limited Li anode in fluorine rich flame retardant electrolytes. 2022;593:153434 doi: 10.1016/j.apsusc.2022.153434 |
2 | Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte. 2022;14:31814 doi: 10.1021/acsami.2c04397 |
3 | Dual-Layered 3D Composite Skeleton Enables Spatially Ordered Lithium Plating/Stripping for Lithium Metal Batteries with Ultra-Low N/P Ratios. 2022;5:14071 doi: 10.1021/acsaem.2c02636 |
4 | Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries. 2022;14:38844 doi: 10.1021/acsami.2c10539 |
5 | Interfacial Engineering of Defect‐Rich and Multi‐Heteroatom‐Doped Metal–Organic Framework‐Derived Manganese Fluoride Anodes to Boost Lithium Storage. 2022; doi: 10.1002/eem2.12436 |
6 | Toward Practical High‐Energy‐Density Lithium–Sulfur Pouch Cells: A Review. 2022;34:2201555 doi: 10.1002/adma.202201555 |
7 | Inverse-opal structured TiO2 regulating electrodeposition behavior to enable stable lithium metal electrodes. 2022; doi: 10.1016/j.gee.2022.03.010 |
8 | Stabilization of the Li metal anode through constructing a LiZn alloy/polymer hybrid protective layer towards uniform Li deposition. 2023;25:124 doi: 10.1039/D2CP04787J |
9 | Anion-Containing Solvation Structure Reconfiguration Enables Wide-Temperature Electrolyte for High-Energy-Density Lithium-Metal Batteries. 2022;14:19056 doi: 10.1021/acsami.2c02221 |
10 | Robust Anion‐Shielding Metal‐Organic Frameworks Based Composite Interlayers To Achieve Uniform Li Deposition for Stable Li‐Metal Anode. 2022;9: doi: 10.1002/celc.202101596 |
11 | Stable High‐Temperature Lithium‐Metal Batteries Enabled by Strong Multiple Ion–Dipole Interactions. 2022;61: doi: 10.1002/anie.202207645 |
12 |
High‐Energy
Lithium‐Ion Batteries: Recent Progress and a Promising Future in Applications
. 2023; doi: 10.1002/eem2.12450 |
13 | Recent achievements of free‐standing material and interface optimization in high‐energy‐density flexible lithium batteries. 2022;1:316 doi: 10.1002/cnl2.33 |
14 | Stable High‐Temperature Lithium‐Metal Batteries Enabled by Strong Multiple Ion–Dipole Interactions. 2022;134: doi: 10.1002/ange.202207645 |
15 |
Designing polysulfides adsorption‐conversion on
g‐C
3
N
4
‐based separator via doping heteroatoms boron and phosphorus toward high‐performance lithium‐sulfur batteries
. 2023;69: doi: 10.1002/aic.17940 |
16 | Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites. 2023;30:611 doi: 10.1007/s12613-022-2532-2 |