REFERENCES

1. Best Research-Cell Efficiency Chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed on 22 Nov 2021].

2. Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021;592:381-5.

3. Quan LN, Rand BP, Friend RH, Mhaisalkar SG, Lee TW, Sargent EH. Perovskites for next-generation optical sources. Chem Rev 2019;119:7444-77.

4. Lu M, Zhang Y, Wang S, Guo J, Yu WW, Rogach AL. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater 2019;29:1902008.

5. Wangyang P, Gong C, Rao G, et al. Recent advances in halide perovskite photodetectors based on different dimensional materials. Advanced Optical Materials 2018;6:1701302.

6. Xie C, Liu C, Loi H, Yan F. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater 2020;30:1903907.

7. Yang T, Wu Q, Dai F, et al. Understanding, optimizing, and utilizing nonideal transistors based on organic or organic hybrid semiconductors. Adv Funct Mater 2020;30:1903889.

8. Liu X, Yu D, Song X, Zeng H. Metal halide perovskites: synthesis, ion migration, and application in field-effect transistors. Small 2018;14:e1801460.

9. Stylianakis MM, Maksudov T, Panagiotopoulos A, Kakavelakis G, Petridis K. Inorganic and hybrid perovskite based laser devices: a review. Materials (Basel) 2019;12:859.

10. Haque MA, Kee S, Villalva DR, Ong WL, Baran D. Halide perovskites: thermal transport and prospects for thermoelectricity. Adv Sci (Weinh) 2020;7:1903389.

11. Gao P, Bin Mohd Yusoff AR, Nazeeruddin MK. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat Commun 2018;9:5028.

12. Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv Energy Mater 2019;9:1803699.

13. Kim J, Lee SH, Lee JH, Hong KH. The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett 2014;5:1312-7.

14. Chen Z, Dong Q, Liu Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat Commun 2017;8:1890.

15. Cui P, Wei D, Ji J, et al. Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat Energy 2019;4:150-9.

16. Euvrard J, Yan Y, Mitzi DB. Electrical doping in halide perovskites. Nat Rev Mater 2021;6:531-49.

17. Park J, Walsh A. Embrace your defects. Nat Energy 2019;4:95-6.

18. Battaglia C, Cuevas A, De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 2016;9:1552-76.

19. Wang Q, Shao Y, Xie H, et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett 2014;105:163508.

20. Cui P, Wei D, Ji J, et al. Highly efficient electron-Selective layer free perovskite solar cells by constructing effective p-n heterojunction. Sol RRL 2017;1:1600027.

21. Ralaiarisoa M, Busby Y, Frisch J, Salzmann I, Pireaux JJ, Koch N. Correlation of annealing time with crystal structure, composition, and electronic properties of CH3NH3PbI3-xClx mixed-halide perovskite films. Phys Chem Chem Phys 2016;19:828-36.

22. Frolova LA, Dremova NN, Troshin PA. The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium-lead iodide (MAPbI3) perovskite solar cells. Chem Commun (Camb) 2015;51:14917-20.

23. Yin W, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett 2014;104:063903.

24. Shi T, Yin W, Yan Y. Predictions for p-type CH3NH3PbI3 perovskites. J Phys Chem C 2014;118:25350-4.

25. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 2013;52:9019-38.

26. Liu Q, Hsiao Y, Ahmadi M, et al. N and p-type properties in organo-metal halide perovskites studied by Seebeck effects. Organic Electronics 2016;35:216-20.

27. Zhang J, Shang M, Wang P, et al. n-type doping and energy states tuning in CH3NH3Pb1-xSb2x/3I3 perovskite solar cells. ACS Energy Lett 2016;1:535-41.

28. Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2 Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater 2020;30:1909972.

29. Almora O, Aranda C, Mas-marzá E, Garcia-belmonte G. On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl Phys Lett 2016;109:173903.

30. Guerrero A, Juarez-perez EJ, Bisquert J, Mora-sero I, Garcia-belmonte G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl Phys Lett 2014;105:133902.

31. Chen Y, Yi HT, Wu X, et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat Commun 2016;7:12253.

32. Kimura T, Matsumori K, Oto K, Kanemitsu Y, Yamada Y. Observation of high carrier mobility in CH3NH3PbBr3 single crystals by AC photo-Hall measurements. Appl Phys Express 2021;14:041009.

33. Gunawan O, Pae S, Bishop D, Shin B, Mitzi D. .

34. Wang C, Liu X, Wang C, et al. Surface analytical investigation on organometal triiodide perovskite. Journal of Vacuum Science & Technology B 2015;33:032401.

35. Mirzehmet A, Ohtsuka T, Abd Rahman SA, Yuyama T, Krüger P, Yoshida H. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv Mater 2021;33:2004981.

36. Zheng Y, Jiang B, Gao Z, et al. Optimization of SnO2-based electron-selective contacts for Si/PEDOT:PSS heterojunction solar cells. Solar Energy 2019;193:502-6.

37. Song D, Wei D, Cui P, et al. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J Mater Chem A 2016;4:6091-7.

38. Sengar BS, Garg V, Kumar A, Dwivedi P. Numerical simulation: design of high-efficiency planar p-n homojunction perovskite solar cells. IEEE Trans Electron Devices 2021;68:2360-4.

39. Li G, Guo F, Zhou X, Xue L, Huang X, Xiao Y. Performance optimization of homojunction perovskite solar cells by numerical simulation. Superlattices and Microstructures 2021;156:106922.

40. Maram DK, Haghighi M, Shekoofa O, Habibiyan H, Ghafoorifard H. A modeling study on utilizing ultra-thin inorganic HTLs in inverted p-n homojunction perovskite solar cells. Solar Energy 2021;213:1-12.

41. Yu W, Li F, Wang H, et al. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 2016;8:6173-9.

42. Lin L, Li P, Kang Z, et al. Device design of doping-controlled homojunction perovskite solar cells omitting HTL and exceeding 25% efficiency. Adv Theory Simul 2021;4:2000222.

43. Lu Y, Zhong J, Yu Y, et al. Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics. Energy Environ Sci 2021;14:4048-58.

44. Chang C, Zou X, Cheng J, Ling T, Yao Y, Chen D. Applied trace alkali metal elements for semiconductor property modulation of perovskite thin films. Molecules 2019;24:4039.

45. Ren L, Wang M, Li M, et al. Enhanced self-powered photoresponse in perovskite films with in situ induced p-n homojunction by Ar+ bombardment. Optical Materials 2020;100:109687.

46. Chen C, Song Z, Xiao C, et al. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 2019;61:141-7.

47. Noel NK, Habisreutinger SN, Pellaroque A, et al. Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ Sci 2019;12:3063-73.

48. Xiong S, Hou Z, Zou S, et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 2021;5:467-80.

49. Sun H, Deng K, Xiong J, Li L. Graded bandgap perovskite with intrinsic n-p homojunction expands photon harvesting range and enables all transport layer-free perovskite solar cells. Adv Energy Mater 2020;10:1903347.

50. Xiang Y, Ma Z, Peng X, Li X, Chen B, Huang Y. Constructing graded perovskite homojunctions by adding large radius phenylmethylamine ions for sequential spin-coating deposition method to improve the efficiency of perovskite solar cells. J Phys Chem C 2020;124:20765-72.

51. Yuan J, Bi C, Xi J, Guo R, Tian J. Gradient-band alignment homojunction perovskite quantum dot solar cells. J Phys Chem Lett 2021;12:1018-24.

52. Kirchartz T, Cahen D. Minimum doping densities for p-n junctions. Nat Energy 2020;5:973-5.

53. Euvrard J, Gunawan O, Mitzi DB. Impact of PbI2 passivation and grain size engineering in CH3NH3PbI3 solar absorbers as revealed by carrier-resolved photo-hall technique. Adv Energy Mater 2019;9:1902706.

54. Song D, Cui P, Wang T, et al. Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J Phys Chem C 2015;19:22812-9.

55. Milot RL, Klug MT, Davies CL, et al. The Effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv Mater 2018;30:e1804506.

56. Calado P, Barnes PRF. Ionic screening in perovskite p-n homojunctions. Nat Energy 2021;6:589-91.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/