REFERENCES

1. Tan P, Jiang H, Zhu X, et al. Advances and challenges in lithium-air batteries. Appl Energy 2017;204:780-806.

2. Kwak WJ, Rosy, Sharon D, et al. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev 2020;120:6626-83.

3. Gao X, Chen Y, Johnson LR, Jovanov ZP, Bruce PG. A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat Energy 2017;2:1-7.

4. Bi X, Wang R, Amine K, Lu J. A critical review on superoxide-based sodium-oxygen batteries. Small Methods 2019;3:1800247.

5. Das SK, Lau S, Archer LA. Sodium-oxygen batteries: a new class of metal-air batteries. J Mater Chem A 2014;2:12623.

6. Ren X, Lau KC, Yu M, et al. Understanding side reactions in K-O2 batteries for improved cycle life. ACS Appl Mater Interfaces 2014;6:19299-307.

7. Qin L, Schkeryantz L, Zheng J, Xiao N, Wu Y. Superoxide-based K-O2 batteries: highly reversible oxygen redox solves challenges in air electrodes. J Am Chem Soc 2020;142:11629-40.

8. Hong Y, Zhao C, Xiao Y, et al. Safe lithium-metal anodes for Li-O2 batteries: from fundamental chemistry to advanced characterization and effective protection. Batteries & Supercaps 2019;2:638-58.

9. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B. An improved high-performance lithium-air battery. Nat Chem 2012;4:579-85.

10. Mccloskey BD, Scheffler R, Speidel A, Girishkumar G, Luntz AC. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries. J Phys Chem C 2012;116:23897-905.

11. Black R, Lee JH, Adams B, Mims CA, Nazar LF. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed Engl 2013;52:392-6.

12. Zhang D, Wang B, Jiang Y, et al. Enhanced electrocatalytic performance of Co3O4/Ketjen-black cathodes for Li-O2 batteries. J Alloys Compd 2015;653:604-10.

13. Xu P, Zhu J, Chen C, Xie J, Wang M. Bi2S3/Ketjen black as a highly efficient bifunctional catalyst for long-cycle lithium-oxygen batteries. ChemElectroChem 2019;6:3885-91.

14. Yu R, Fan W, Guo X, Dong S. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries. J Power Sources 2016;306:402-7.

15. Xia G, Shen S, Zhu F, et al. Effect of oxygen-containing functional groups of carbon materials on the performance of Li-O2 batteries. Electrochem Communs 2015;60:26-9.

16. Xu SM, Liang X, Ren ZC, Wang KX, Chen JS. Free-standing air cathodes based on 3D hierarchically porous carbon membranes: kinetic overpotential of continuous macropores in Li-O2 batteries. Angew Chem Int Ed Engl 2018;57:6825-9.

17. Liu L, Ma T, Fang W, et al. Facile fabrication of Ag nanocrystals encapsulated in nitrogen-doped fibrous carbon as an efficient catalyst for lithium oxygen batteries. Energy Environ Mater 2021;4:239-45.

18. Liu L, Guo H, Hou Y, et al. A 3D hierarchical porous Co3O4 nanotube network as an efficient cathode for rechargeable lithium-oxygen batteries. J Mater Chem A 2017;5:14673-81.

19. Hou Y, Wang J, Liu J, et al. Interfacial super - assembled porous CeO2/C frameworks featuring efficient and sensitive decomposing Li2O2 for smart Li-O2 batteries. Adv Energy Mater 2019;9:1901751.

20. Hou Y, Wang J, Hou C, et al. Oxygen vacancies promoting the electrocatalytic performance of CeO2 nanorods as cathode materials for Li-O2 batteries. J Mater Chem A 2019;7:6552-61.

21. Zhang J, Sun B, Xie X, Kretschmer K, Wang G. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether. Electrochimica Acta 2015;183:56-62.

22. Tong B, Huang J, Zhou Z, Peng Z. The salt matters: enhanced reversibility of Li-O2 batteries with a Li[(CF3SO2)(n-C4F9SO2)N]-based electrolyte. Adv Mater 2018;30:1704841.

23. Liu QC, Xu JJ, Yuan S, et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv Mater 2015;27:5241-7.

24. Kozen AC, Lin C, Zhao O, Lee SB, Rubloff GW, Noked M. Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem Mater 2017;29:6298-307.

25. Hirshberg D, Sharon D, De La Llave E, et al. Feasibility of full (Li-Ion)-O2 cells comprised of hard carbon anodes. ACS Appl Mater Interfaces 2017;9:4352-61.

26. Zhang Y, Wang L, Guo Z, Xu Y, Wang Y, Peng H. High-performance lithium-air battery with a coaxial-fiber architecture. Angew Chem Int Ed Engl 2016;55:4487-91.

27. Zhang T, Liao K, He P, Zhou H. A self-defense redox mediator for efficient lithium-O2 batteries. Energy Environ Sci 2016;9:1024-30.

28. Walker W, Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J Am Chem Soc 2013;135:2076-9.

29. Bryantsev VS, Giordani V, Walker W, et al. Investigation of fluorinated amides for solid-electrolyte interphase stabilization in Li-O2 batteries using amide-based electrolytes. J Phys Chem C 2013;117:11977-88.

30. Lyu Z, Zhou Y, Dai W, et al. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem Soc Rev 2017;46:6046-72.

31. Mushtaq M, Guo X, Wang Y, Hao L, Lin Z, Yu H. Composite cathode architecture with improved oxidation kinetics in polymer-based Li-O2 batteries. ACS Appl Mater Interfaces 2020;12:30259-67.

32. Zhang T, Zhou H. From Li-O2 to Li-air batteries: carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. Angew Chem Int Ed Engl 2012;51:11062-7.

33. Zhu XB, Zhao TS, Wei ZH, Tan P, Zhao G. A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure. Energy Environ Sci 2015;8:2782-90.

34. Xiao L, Li E, Yi J, Meng W, Deng B, Liu J. Enhanced performance of solid-state Li-O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met 2018;37:527-35.

35. Zhu XB, Zhao TS, Wei ZH, Tan P, An L. A high-rate and long cycle life solid-state lithium-air battery. Energy Environ Sci 2015;8:3745-54.

36. Lin X, Yuan R, Cai S, et al. An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries. Adv Energy Mater 2018;8:1800089.

37. Sun B, Huang X, Chen S, Munroe P, Wang G. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett 2014;14:3145-52.

38. Meng N, Lian F, Li Y, et al. Exploring PVFM-based janus membrane-supporting gel polymer electrolyte for highly durable Li-O2 batteries. ACS Appl Mater Interfaces 2018;10:22237-47.

39. Huang Z, Deng Z, Shen Y, et al. A Li-O2 battery cathode with vertical mass/charge transfer pathways. J Mater Chem A 2019;7:3000-5.

40. Ha TA, Fdz De Anastro A, Ortiz-Vitoriano N, et al. High coulombic efficiency Na-O2 batteries enabled by a bilayer ionogel/ionic liquid. J Phys Chem Lett 2019;10:7050-5.

41. Kim CHJ, Varanasi CV, Liu J. Synergy of polypyrrole and carbon x-aerogel in lithium-oxygen batteries. Nanoscale 2018;10:3753-8.

42. Zhou B, Guo L, Zhang Y, et al. A high-performance Li-O2 battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode. Adv Mater 2017;29:1701568.

43. Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries. Eur Polym J 2006;42:21-42.

44. Cho YG, Hwang C, Cheong DS, Kim YS, Song HK. Gel/Solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv Mater 2019;31:e1804909.

45. Li X, Shao J, Kim SK, et al. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat Commun 2018;9:2578.

46. Wang J, Ni Y, Liu J, et al. Room-temperature flexible quasi-solid-state rechargeable Na-O2 batteries. ACS Cent Sci 2020;6:1955-63.

47. Song E, Shin J, Lee S, Kim S. Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage. J Ind Eng Chem 2020;87:173-9.

48. Matsuda S, Yamaguchi S, Yasukawa E, et al. Effect of electrolyte filling technology on the performance of porous carbon electrode-based lithium-oxygen batteries. ACS Appl Energy Mater 2021;4:2563-9.

49. Chen C, Xu S, Kuang Y, et al. Nature-inspired tri-pathway design enabling high-performance flexible Li-O2 batteries. Adv Energy Mater 2019;9:1802964.

50. Jiang Z, Xu G, Yu Z, et al. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower. Nano Energy 2019;64:103896.

51. Zeng J, Francia C, Amici J, Bodoardo S, Penazzi N. Mesoporous Co3O4 nanocrystals as an effective electro-catalyst for highly reversible Li-O2 batteries. J Power Sources 2014;272:1003-9.

52. Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551-7.

53. Bonnet-Mercier N, Wong RA, Thomas ML, et al. A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li-O2 batteries. Sci Rep 2014;4:7127.

54. Kitaura H, Zhou H. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode. Adv Energy Mater 2012;2:889-94.

55. Gao K, Wang H, He M, et al. Interfacial integration and roll forming of quasi-solid-state Li-O2 battery through solidification and gelation of ionic liquid. J Power Sources 2020;463:228179.

56. Li C, Liu Y, Li B, et al. Integrated solid electrolyte with porous cathode by facilely one-step sintering for an all-solid-state Li-O2 battery. Nanotechnology 2019;30:364003.

57. Ge B, Wang J, Sun Y, Guo J, Fernandez C, Peng Q. Heterojunction-composited architecture for Li-O2 batteries with low overpotential and long-term cyclability. ACS Appl Energy Mater 2020;3:3789-97.

58. Gilmore P, Sundaresan VB. A functionally graded cathode architecture for extending the cycle-life of potassium-oxygen batteries. Batteries & Supercaps 2019;2:678-87.

59. Tovini MF, Patil B, Koz C, Uyar T, Yılmaz E. Nanohybrid structured RuO2/Mn2O3/CNF as a catalyst for Na-O2 batteries. Nanotechnology 2018;29:475401.

60. Frankberg EJ, George L, Efimov A, Honkanen M, Pessi J, Levänen E. Measuring synthesis yield in graphene oxide synthesis by modified hummers method. Fuller Nanotub Carbon Nanostructures 2014;23:755-9.

61. Vazquez-jaime M, Arcibar-orozco J, Damian-ascencio C, et al. Effective removal of arsenic from an aqueous solution by ferrihydrite/goethite graphene oxide composites using the modified Hummers method. J Environ Chem Eng 2020;8:104416.

62. Wong YJ, Zhu L, Teo WS, et al. Revisiting the Stöber method: inhomogeneity in silica shells. J Am Chem Soc 2011;133:11422-5.

63. Ghimire PP, Jaroniec M. Renaissance of Stöber method for synthesis of colloidal particles: new developments and opportunities. J Colloid Interface Sci 2021;584:838-65.

64. Dong H, Li K, Wang Y, Yin Y, Yang S. Preparation of pyridine N-doped metal-free Li-O2 battery cathode by one-step. Electrochimica Acta 2020;330:135231.

65. Lin X, Wang J, Gao X, et al. 3D printing of free-standing “O2 breathable” air electrodes for high-capacity and long-life Na-O2 batteries. Chem Mater 2020;32:3018-27.

66. Nasybulin E, Xu W, Engelhard MH, Nie Z, Li XS, Zhang J. Stability of polymer binders in Li-O2 batteries. J Power Sources 2013;243:899-907.

67. Amanchukwu CV, Harding JR, Shao-horn Y, Hammond PT. Understanding the chemical stability of polymers for lithium-air batteries. Chem Mater 2015;27:550-61.

68. Sun Q, Lin X, Yadegari H, et al. Aligning the binder effect on sodium-air batteries. J Mater Chem A 2018;6:1473-84.

69. Yadegari H, Sun Q, Sun X. Sodium-oxygen batteries: a comparative review from chemical and electrochemical fundamentals to future perspective. Adv Mater 2016;28:7065-93.

70. Papp JK, Forster JD, Burke CM, et al. Poly(vinylidene fluoride) (PVDF) binder degradation in Li-O2 batteries: a consideration for the characterization of lithium superoxide. J Phys Chem Lett 2017;8:1169-74.

71. Pozo-Gonzalo C, Zhang Y, Ortiz-Vitoriano N, et al. Controlling the three-phase boundary in Na-oxygen batteries: the synergy of carbon nanofibers and ionic liquid. ChemSusChem 2019;12:4054-63.

72. Jian Z, Chen Y, Li F, Zhang T, Liu C, Zhou H. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode. J Power Sources 2014;251:466-9.

73. Ma J, Zhang X. Optimized nitrogen-doped carbon with a hierarchically porous structure as a highly efficient cathode for Na-O2 batteries. J Mater Chem A 2016;4:10008-13.

74. Wang L, Zhang R, Dai H, et al. Reinforce the adhesion of Gel electrolyte to electrode and the interfacial charge transfer via in situ electrospinning the polymeric nanofiber matrix. Energy Technol 2021;9:2000865.

75. Yang T, Shu C, Hou Z, et al. 3D porous network gel polymer electrolyte with high transference number for dendrite-free Li O2 batteries. Solid State Ionics 2019;343:115088.

76. Zhao C, Sun Q, Luo J, et al. 3D porous garnet/Gel polymer hybrid electrolyte for safe solid-state Li-O2 batteries with long lifetimes. Chem Mater 2020;32:10113-9.

77. Liao K, Wu S, Mu X, et al. Developing a "water-defendable" and "dendrite-free" lithium-metal anode using a simple and promising GeCl4 pretreatment method. Adv Mater 2018;30:e1705711.

78. Yi J, Guo S, He P, Zhou H. Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries. Energy Environ Sci 2017;10:860-84.

79. Li C, Guo Z, Yang B, Liu Y, Wang Y, Xia Y. A rechargeable Li-CO2 battery with a Gel polymer electrolyte. Angew Chem Int Ed Engl 2017;56:9126-30.

80. Lim H, Song H, Gwon H, et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ Sci 2013;6:3570.

81. Sun B, Munroe P, Wang G. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci Rep 2013;3:2247.

82. Zhong G, Xu S, Cui M, et al. Rapid, high-temperature, in situ microwave synthesis of bulk nanocatalysts. Small 2019;15:e1904881.

83. He F, Xia N, Zheng Y, et al. In situ electrochemical fabrication of ultrasmall ru-based nanoparticles for robust N2H4 oxidation. ACS Appl Mater Interfaces 2021;13:8488-96.

84. Guo Z, Li C, Liu J, Wang Y, Xia Y. A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator. Angew Chem Int Ed Engl 2017;56:7505-9.

85. Liu H, Liu M, Yang L, et al. A bi-functional redox mediator promoting the ORR and OER in non-aqueous Li-O2 batteries. Chem Commun (Camb) 2019;55:6567-70.

86. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li-O2 battery using a redox mediator. Nat Chem 2013;5:489-94.

87. Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew Chem Int Ed Engl 2017;56:8505-9.

88. Aurbach D, Mccloskey BD, Nazar LF, Bruce PG. Advances in understanding mechanisms underpinning lithium-air batteries. Nat Energy 2016;1:1-11.

89. Johnson L, Li C, Liu Z, et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat Chem 2014;6:1091-9.

90. Horstmann B, Gallant B, Mitchell R, Bessler WG, Shao-Horn Y, Bazant MZ. Rate-dependent morphology of Li2O2 growth in Li-O2 batteries. J Phys Chem Lett 2013;4:4217-22.

91. Adams BD, Radtke C, Black R, Trudeau ML, Zaghib K, Nazar LF. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ Sci 2013;6:1772.

92. Chen Y, Jovanov ZP, Gao X, et al. High capacity surface route discharge at the potassium-O2 electrode. J Electroanal Chem 2018;819:542-6.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/