REFERENCES

1. Bui M, Adjiman CS, Bardow A, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci 2018;11:1062-176.

2. Sterba J, Krzemień A, Riesgo Fernández P, Escanciano García-miranda C, Fidalgo Valverde G. Lithium mining: accelerating the transition to sustainable energy. Resources Policy 2019;62:416-26.

3. Cheng X, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries. SusMat 2021;1:38-50.

4. Watari T, Nansai K, Nakajima K, McLellan BC, Dominish E, Giurco D. Integrating circular economy strategies with low-carbon scenarios: lithium use in electric vehicles. Environ Sci Technol 2019;53:11657-65.

5. Sadhukhan J, Christensen M. An in-depth life cycle assessment (LCA) of lithium-ion battery for climate impact mitigation strategies. Energies 2021;14:5555.

6. Liu J, Yuan H, Tao X, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat 2020:2.

7. Shen X, Zhang X, Ding F, et al. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv 2021;2021:1-15.

8. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

9. Kong L, Tang C, Peng H, Huang J, Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 2020;1:1-35.

10. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12:194-206.

11. Lu Y, Rong X, Hu Y, Chen L, Li H. Research and development of advanced battery materials in China. Energy Storage Mater 2019;23:144-53.

12. Sun C, Dong J, Lu X, Li Y, Lai C. Sol electrolyte: pathway to long-term stable lithium metal anode. Adv Funct Mater 2021;31:2100594.

13. Zhang Q, Zhang X, Yuan H, Huang J. Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives. Small Sci 2021;1:2100058.

14. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017;117:10403-73.

15. Ding J, Xu R, Yan C, Li B, Yuan H, Huang J. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J Energy Chem 2021;59:306-19.

16. Yan C, Yuan H, Park HS, Huang J. Perspective on the critical role of interface for advanced batteries. J Energy Chem 2020;47:217-20.

17. Takenaka N, Bouibes A, Yamada Y, Nagaoka M, Yamada A. Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism. Adv Mater 2021;33:e2100574.

18. Liu W, Liu P, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv Energy Mater 2020;10:2002297.

19. Yan C, Xu R, Xiao Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv Funct Mater 2020;30:1909887.

20. Meng X, Xu Y, Cao H, et al. Internal failure of anode materials for lithium batteries - a critical review. Green Energy Environ 2020;5:22-36.

21. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.

22. Yan C, Li HR, Chen X, et al. Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J Am Chem Soc 2019;141:9422-9.

23. Chen X, Li HR, Shen X, Zhang Q. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes. Angew Chem Int Ed Engl 2018;57:16643-7.

24. Song W, Scholtis ES, Sherrell PC, et al. Electronic structure influences on the formation of the solid electrolyte interphase. Energy Environ Sci 2020;13:4977-89.

25. Groß A, Sakong S. Modelling the electric double layer at electrode/electrolyte interfaces. Curr Opin Electrochem 2019;14:1-6.

26. Camacho-forero LE, Balbuena PB. Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. J Power Sources 2020;472:228449.

27. Shi S, Lu P, Liu Z, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc 2012;134:15476-87.

28. Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 1997;144:L208-10.

29. Zhang X, Cheng X, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 2018;5:1701097.

30. Li S, Jiang M, Xie Y, Xu H, Jia J, Li J. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv Mater 2018;30:e1706375.

31. Zhang X, Cheng X, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 2017;27:1605989.

32. Gao Y, Rojas T, Wang K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat Energy 2020;5:534-42.

33. Xiao Y, Xu R, Yan C, Liang Y, Ding J, Huang J. Waterproof lithium metal anode enabled by cross-linking encapsulation. Sci Bull 2020;65:909-16.

34. Dai H, Gu X, Dong J, Wang C, Lai C, Sun S. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat Commun 2020;11:643.

35. Xu R, Zhang X, Cheng X, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater 2018;28:1705838.

36. Liu K, Pei A, Lee HR, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer. J Am Chem Soc 2017;139:4815-20.

37. Yan C, Cheng XB, Tian Y, et al. Dual-Layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv Mater 2018;30:e1707629.

38. Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 2014;9:618-23.

39. Xu R, Xiao Y, Zhang R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv Mater 2019;31:e1808392.

40. Yan C, Cheng XB, Yao YX, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv Mater 2018;30:e1804461.

41. Xu R, Cheng X, Yan C, et al. Artificial interphases for highly stable lithium metal anode. Matter 2019;1:317-44.

42. Cai W, Yan C, Yao Y, et al. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Struct 2020;1:2000010.

43. Cai W, Yao YX, Zhu GL, et al. A review on energy chemistry of fast-charging anodes. Chem Soc Rev 2020;49:3806-33.

44. Logan E, Dahn J. Electrolyte design for fast-charging li-ion batteries. Trends Chem 2020;2:354-66.

45. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy 2019;4:269-80.

46. Yan C, Jiang LL, Yao YX, Lu Y, Huang JQ, Zhang Q. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries. Angew Chem Int Ed Engl 2021;60:8521-5.

47. Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation. Electrochimica Acta 1983;28:879-89.

48. Scharifker B, Rugeles R, Mozota J. Electrocrystallization of copper sulphide (CU2S) on copper. Electrochimica Acta 1984;29:261-6.

49. Bewick A, Fleischmann M, Thirsk HR. Kinetics of the electrocrystallization of thin films of calomel. Trans Faraday Soc 1962;58:2200.

50. Li Z, Zhou Y, Wang Y, Lu Y. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv Energy Mater 2019;9:1802207.

51. Wu H, Jia H, Wang C, Zhang J, Xu W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv Energy Mater 2021;11:2003092.

52. Suo L, Xue W, Gobet M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc Natl Acad Sci U S A 2018;115:1156-61.

53. Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J. The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater 2020;28:401-6.

54. Chen X, Zhang Q. Atomic Insights into the fundamental interactions in lithium battery electrolytes. Acc Chem Res 2020;53:1992-2002.

55. Peled E, Menkin S. Review-SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19.

56. Zhao J, Liao L, Shi F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 2017;139:11550-8.

57. Chen YC, Ouyang CY, Song LJ, Sun ZL. Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J Phys Chem C 2011;115:7044-9.

58. Lin D, Liu Y, Chen W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano Lett 2017;17:3731-7.

59. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 2005;152:A396.

60. Wu M, Wen Z, Liu Y, Wang X, Huang L. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J Power Sources 2011;196:8091-7.

61. Zhang Y, Wang W, Tang H, et al. An ex-situ nitridation route to synthesize Li 3 N-modified Li anodes for lithium secondary batteries. J Power Sources 2015;277:304-11.

62. Billone M, Liu Y, Poeppel R, Routbort J, Goretta K, Kupperman D. Elastic and creep properties of Li2O. J Nucl Mater 1986;141-143:282-8.

63. Huang W, Attia PM, Wang H, et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett 2019;19:5140-8.

64. Cheng X, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2017;2:258-70.

65. Shen X, Zhang R, Chen X, Cheng X, Li X, Zhang Q. The failure of solid electrolyte interphase on li metal anode: structural uniformity or mechanical strength? Adv Energy Mater 2020;10:1903645.

66. Ramasubramanian A, Yurkiv V, Foroozan T, Ragone M, Shahbazian-yassar R, Mashayek F. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. J Phys Chem C 2019;123:10237-45.

67. Ahmad Z, Venturi V, Hafiz H, Viswanathan V. Interfaces in solid electrolyte interphase: implications for lithium-ion batteries. J Phys Chem C 2021;125:11301-9.

68. Chen XR, Yao YX, Yan C, Zhang R, Cheng XB, Zhang Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew Chem Int Ed Engl 2020;59:7743-7.

69. Cui C, Yang C, Eidson N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv Mater 2020;32:e1906427.

70. Zheng J, Ju Z, Zhang B, et al. Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. J Mater Chem A 2021;9:10251-9.

71. Fan X, Ji X, Han F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv 2018;4:eaau9245.

72. Li W, Wu G, Araújo CM, et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ Sci 2010;3:1524.

73. Zhu J, Li P, Chen X, et al. Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater 2019;16:426-33.

74. Moradabadi A, Kaghazchi P. Thermodynamics and kinetics of defects in Li2S. Appl Phys Lett 2016;108:213906.

75. Borodin O, Zhuang GV, Ross PN, Xu K. Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate. J Phys Chem C 2013;117:7433-44.

76. Chen X, Zhang X, Li H, Zhang Q. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries. Batteries & Supercaps 2019;2:128-31.

77. Yamada Y, Yamada A. Review - superconcentrated electrolytes for lithium batteries. J Electrochem Soc 2015;162:A2406-23.

78. Zheng J, Lochala JA, Kwok A, Deng ZD, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv Sci (Weinh) 2017;4:1700032.

79. Seo DM, Borodin O, Han S, Ly Q, Boyle PD, Henderson WA. Electrolyte solvation and ionic association. J Electrochem Soc 2012;159:A553-65.

80. Yao YX, Chen X, Yan C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte*. Angew Chem Int Ed Engl 2021;60:4090-7.

81. Suo L, Hu YS, Li H, Armand M, Chen L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 2013;4:1481.

82. Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun 2016;7:12032.

83. Yamada Y, Chiang CH, Sodeyama K, Wang J, Tateyama Y, Yamada A. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015;2:1687-94.

84. Li M, Wang C, Chen Z, Xu K, Lu J. New concepts in electrolytes. Chem Rev 2020;120:6783-819.

85. Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun 2015;6:6362.

86. Fan X, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018;4:174-85.

87. Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 2018;3:22-9.

88. Jiao S, Ren X, Cao R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat Energy 2018;3:739-46.

89. Jiang LL, Yan C, Yao YX, Cai W, Huang JQ, Zhang Q. Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew Chem Int Ed Engl 2021;60:3402-6.

90. Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 2014;136:5039-46.

91. Takenaka N, Fujie T, Bouibes A, Yamada Y, Yamada A, Nagaoka M. Microscopic formation mechanism of solid electrolyte interphase film in lithium-ion batteries with highly concentrated electrolyte. J Phys Chem C 2018;122:2564-71.

92. Fan X, Ji X, Chen L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat Energy 2019;4:882-90.

93. Jiang Z, Zeng Z, Liang X, et al. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv Funct Mater 2021;31:2005991.

94. Ren X, Chen S, Lee H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018;4:1877-92.

95. Yang Y, Davies DM, Yin Y, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019;3:1986-2000.

96. Cao X, Zou L, Matthews BE, et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Mater 2021;34:76-84.

97. Cao X, Jia H, Xu W, Zhang J. Review - localized high-concentration electrolytes for lithium batteries. J Electrochem Soc 2021;168:010522.

98. Chen S, Zheng J, Mei D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater 2018;30:e1706102.

99. Piao N, Ji X, Xu H, et al. Countersolvent electrolytes for lithium-metal batteries. Adv Energy Mater 2020;10:1903568.

100. Liu T, Li H, Yue J, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew Chem Int Ed Engl 2021;60:17547-55.

101. Pham TD, Lee KK. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small 2021;17:e2100133.

102. Liu X, Shen X, Li H, et al. Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure. Adv Energy Mater 2021;11:2003905.

103. Jeong S, Inaba M, Iriyama Y, Abe T, Ogumi Z. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions. Electrochem Solid-State Lett 2003;6:A13.

104. Xing L, Zheng X, Schroeder M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries. Acc Chem Res 2018;51:282-9.

105. Yamada Y, Yamada A. Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries. Chem Lett 2017;46:1056-64.

106. Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem Commun (Camb) 2013;49:11194-6.

107. Wang J, Zheng Q, Fang M, Ko S, Yamada Y, Yamada A. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries. Adv Sci (Weinh) 2021;8:e2101646.

108. Liu T, Lin L, Bi X, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat Nanotechnol 2019;14:50-6.

109. Yao YX, Yan C, Zhang Q. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem Commun (Camb) 2020;56:14570-84.

110. Moon H, Tatara R, Mandai T, et al. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme–Li salt solvate ionic liquids. J Phys Chem C 2014;118:20246-56.

111. Ming J, Cao Z, Wu Y, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Lett 2019;4:2613-22.

112. Zhang T, Paillard E. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery. Front Chem Sci Eng 2018;12:577-91.

113. Jeong S, Seo H, Kim D, et al. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem Commun 2008;10:635-8.

114. Alvarado J, Schroeder MA, Pollard TP, et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci 2019;12:780-94.

115. Zhang X, Chen X, Hou L, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett 2019;4:411-6.

116. Louli AJ, Eldesoky A, Weber R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat Energy 2020;5:693-702.

117. Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat Energy 2020;5:526-33.

118. Chen S, Zheng J, Yu L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018;2:1548-58.

119. Dokko K, Tachikawa N, Yamauchi K, et al. Solvate ionic liquid electrolyte for Li–S batteries. J Electrochem Soc 2013;160:A1304-10.

120. Moon H, Mandai T, Tatara R, et al. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. J Phys Chem C 2015;119:3957-70.

121. Ren X, Zou L, Cao X, et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019;3:1662-76.

122. Cao X, Ren X, Zou L, et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy 2019;4:796-805.

123. Cai W, Yan C, Yao YX, et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew Chem Int Ed Engl 2021;60:13007-12.

124. Amanchukwu CV, Kong X, Qin J, Cui Y, Bao Z. Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping. Adv Energy Mater 2019;9:1902116.

125. Cao X, Gao P, Ren X, et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc Natl Acad Sci U S A 2021;118:e2020357118.

126. Ding JF, Xu R, Yao N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew Chem Int Ed Engl 2021;60:11442-7.

127. Santos E, Schmickler W. The crucial role of local excess charges in dendrite growth on lithium electrodes. Angew Chem Int Ed Engl 2021;60:5876-81.

128. Xu R, Shen X, Ma XX, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface. Angew Chem Int Ed Engl 2021;60:4215-20.

129. Li T, Li Y, Sun Y, Qian Z, Wang R. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Materials Lett 2021;3:838-44.

130. Xu R, Ding JF, Ma XX, Yan C, Yao YX, Huang JQ. Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv Mater 2021:e2105962.

131. Battisti D, Nazri GA, Klassen B, Aroca R. Vibrational studies of lithium perchlorate in propylene carbonate solutions. J Phys Chem 1993;97:5826-30.

132. Kim SC, Kong X, Vilá RA, et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J Am Chem Soc 2021;143:10301-8.

133. Xue W, Huang M, Li Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy 2021;6:495-505.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/