REFERENCES

1. Tomalia DA, Khanna SN. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chem Rev 2016;116:2705-74.

2. Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano 2010;4:4806-14.

3. Naguib M, Gogotsi Y. Synthesis of two-dimensional materials by selective extraction. Acc Chem Res 2015;48:128-35.

4. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992-1005.

5. Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322-31.

6. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 2016;116:7159-329.

7. Li W, Bashir T, Wang J, et al. Enhanced sodium-ion storage performance of a 2D MoS2 anode material coated on carbon nanotubes. ChemElectroChem 2021;8:903-10.

8. Yao L, Xi Y, Han H, Li W, Wang C, Feng Y. LiMn2O4 prepared from waste lithium ion batteries through sol-gel process. J Alloys Compd 2021;868:159222.

9. Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994;69:212-21.

10. Li L, Zhao R, Xu T, et al. Stabilizing a high-voltage LiNi0.5Mn1.5O4 cathode towards all solid state batteries: a Li-Al-Ti-P-O solid electrolyte nano-shell with a host material. Nanoscale 2019;11:8967-77.

11. Yang S, Yao J, Hu H, et al. Sonication-induced electrostatic assembly of an FeCO3@Ti3C2 nanocomposite for robust lithium storage. J Mater Chem A 2020;8:23498-510.

12. Gao X, Yang H. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 2010;3:174-89.

13. Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 2002;1:123-8.

14. Kim D, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett 2006;9:A439.

15. Doeff MM, Ma Y, Visco SJ, De Jonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc 1993;140:L169-70.

16. Alcántara R, Lavela P, Tirado JL, Stoyanova R, Kuzmanova E, Zhecheva E. Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrodes. Chem Mater 1997;9:2145-55.

17. Wenzel S, Hara T, Janek J, Adelhelm P. Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 2011;4:3342.

18. Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 2000;147:1271.

19. Dominko R, Gaberscek M, Bele M, Mihailovic D, Jamnik J. Carbon nanocoatings on active materials for Li-ion batteries. J Eur Ceram Soc 2007;27:909-13.

20. Gaberscek M, Dominko R, Bele M, Remskar M, Jamnik J. Mass and charge transport in hierarchically organized storage materials. Example: porous active materials with nanocoated walls of pores. Solid State Ionics 2006;177:3015-22.

21. Kharbachi A, Zavorotynska O, Latroche M, Cuevas F, Yartys V, Fichtner M. Exploits, advances and challenges benefiting beyond Li-ion battery technologies. J Alloys Compd 2020;817:153261.

22. Gogotsi Y, Simon P. Materials science. True performance metrics in electrochemical energy storage. Science 2011;334:917-8.

23. Deng Z, Liu T, Chen T, et al. Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium ion batteries. ACS Appl Mater Interfaces 2017;9:12469-77.

24. Ghodbane O, Pascal J, Favier F. Microstructural effects on charge storage properties in MnO2 based electrochemical supercapacitors. ECS Trans 2009;16:235-41.

25. Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341:1502-5.

26. Ali T, Wang X, Tang K, et al. SnS2 quantum dots growth on MoS2: atomic-level heterostructure for electrocatalytic hydrogen evolution. Electrochim Acta 2019;300:45-52.

27. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science 2019;366:eaan8285.

28. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 2014;6:11173-9.

29. Mills G, Jónsson H, Schenter GK. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 1995;324:305-37.

30. Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? J Am Chem Soc 2012;134:16909-16.

31. Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium-sulfur batteries. Chem Rev 2014;114:11751-87.

32. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.

33. Ye H, Li M, Liu T, Li Y, Lu J. Activating Li2S as the lithium-containing cathode in lithium-sulfur Batteries. ACS Energy Lett 2020;5:2234-45.

34. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 2015;6:5682.

35. He X, Ren J, Wang L, Pu W, Jiang C, Wan C. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. J Power Sources 2009;190:154-6.

36. Rauh R, Shuker F, Marston J, Brummer S. Formation of lithium polysulfides in aprotic media. Journal of Inorganic and Nuclear Chemistry 1977;39:1761-6.

37. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E. Lithium sulfur battery: oxidation/reduction mechanisms of polysulfides in THF dolutions. J Electrochem Soc 1988;135:1045-8.

38. Xiong S, Xie K, Diao Y, Hong X. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J Power Sources 2014;246:840-5.

39. Cañas NA, Fronczek DN, Wagner N, Latz A, Friedrich KA. Experimental and theoretical analysis of products and reaction intermediates of lithium-sulfur batteries. J Phys Chem C 2014;118:12106-14.

40. Ali T, Yan C. 2 D Materials for inhibiting the shuttle effect in advanced lithium-sulfur batteries. ChemSusChem 2020;13:1447-79.

41. Luo C, Zhu H, Luo W, et al. Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. ACS Appl Mater Interfaces 2017;9:14801-7.

42. Abraham KM, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 1996;143:1-5.

43. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG. Rechargeable LI2O2 electrode for lithium batteries. J Am Chem Soc 2006;128:1390-3.

44. Peng Z, Freunberger SA, Chen Y, Bruce PG. A reversible and higher-rate Li-O2 battery. Science 2012;337:563-6.

45. Shao Y, Park S, Xiao J, Zhang J, Wang Y, Liu J. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal 2012;2:844-57.

46. Zhao G, Xu Z, Sun K. Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O2 batteries. J Mater Chem A 2013;1:12862.

47. Mourad E, Coustan L, Lannelongue P, et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat Mater 2017;16:446-53.

48. Mahne N, Fontaine O, Thotiyl MO, Wilkening M, Freunberger SA. Mechanism and performance of lithium-oxygen batteries - a perspective. Chem Sci 2017;8:6716-29.

49. Zhang T, Yang J, Zhu J, et al. A lithium-ion oxygen battery with a Si anode lithiated in situ by a Li3N-containing cathode. Chem Commun (Camb) 2018;54:1069-72.

50. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG. The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed Engl 2011;50:8609-13.

51. Mirzaeian M, Hall PJ. Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy. J Power Sources 2010;195:6817-24.

52. Burke CM, Pande V, Khetan A, Viswanathan V, McCloskey BD. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc Natl Acad Sci U S A 2015;112:9293-8.

53. Lee S, Kwon G, Ku K, et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv Mater 2018;30:e1704682.

54. Liang Y, Tao Z, Chen J. Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2012;2:742-69.

55. Luo C, Ji X, Hou S, et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv Mater 2018;30:e1706498.

56. Alt H, Binder H, Köhling A, Sandstede G. Investigation into the use of quinone compounds-for battery cathodes. Electrochim Acta 1972;17:873-87.

57. Kim T, Song W, Son D, Ono LK, Qi Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 2019;7:2942-64.

58. Luo C, Huang R, Kevorkyants R, Pavanello M, He H, Wang C. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett 2014;14:1596-602.

59. Cariello M, Johnston B, Bhosale M, et al. Benzo-dipteridine derivatives as organic cathodes for Li- and Na-ion batteries. ACS Appl Energy Mater 2020;3:8302-8.

60. Lakraychi AE, Deunf E, Fahsi K, et al. An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries. J Mater Chem A 2018;6:19182-9.

61. Shea JJ, Luo C. Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces 2020;12:5361-80.

62. Luo C, Borodin O, Ji X, et al. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc Natl Acad Sci U S A 2018;115:2004-9.

63. Peng C, Ning G, Su J, et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy 2017;2:17074.

64. Lei Z, Chen X, Sun W, Zhang Y, Wang Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv Energy Mater 2019;9:1801010.

65. Thangadurai V, Kaack H, Weppner WJF. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 2003;86:437-40.

66. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2017;2:16103.

67. Zhang M, Takahashi K, Imanishi N, et al. Preparation and electrochemical properties of Li1+xAlxGe2-x(PO4)3 synthesized by a sol-gel method. J Electrochem Soc 2012;159:A1114-9.

68. Inaguma Y, Liquan C, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun 1993;86:689-93.

69. Chen R, Qu W, Guo X, Li L, Wu F. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 2016;3:487-516.

70. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017;33:363-86.

71. Appetecchi G, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 1995;40:991-7.

72. Macglashan GS, Andreev YG, Bruce PG. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 1999;398:792-4.

73. Abraham KM, Alamgir M. Li+-conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc 1990;137:1657-8.

74. Choe H, Giaccai J, Alamgir M, Abraham K. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochim Acta 1995;40:2289-93.

75. Kanehori K, Matsumoto K, Miyauchi K, Kudo T. Thin film solid electrolyte and its application to secondary lithium cell. Solid State Ionics 1983;9-10:1445-8.

76. Chhowalla M, Teo KBK, Ducati C, et al. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 2001;90:5308-17.

77. Bates J, Dudney N, Gruzalski G, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 1993;43:103-10.

78. Tabata H, Tanaka H, Kawai T. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl Phys Lett 1994;65:1970-2.

79. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-9.

80. Bates J. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 1992;53-56:647-54.

81. Yu X, Bates JB, Jellison GE, Hart FX. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 1997;144:524-32.

82. Larson RW, Day DE. Preparation and characterization of lithium phosphorus oxynitride glass. J Non Cryst Solids 1986;88:97-113.

83. Li J, Ma C, Chi M, Liang C, Dudney NJ. Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater 2015;5:1401408.

84. Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater 2014;26:4248-55.

85. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 2006;18:2226-9.

86. Yamaguchi Y, Takeuchi T, Sakaebe H, et al. Ab initio simulations of Li/pyrite-MS2 (M=Fe, Ni) battery cells. J Electrochem Soc 2010;157:A630.

87. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 2016;138:9385-8.

88. Wang L, Zhang X, Wang T, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers. Adv Energy Mater 2018;8:1801528.

89. Mehrer H. .

90. Takechi K, Shiga T, Asaoka T. A Li-O2/CO2 battery. Chem Commun (Camb) 2011;47:3463-5.

91. Lim HK, Lim HD, Park KY, et al. Toward a lithium-“air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. J Am Chem Soc 2013;135:9733-42.

92. Xu S, Das SK, Archer LA. The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC Adv 2013;3:6656.

93. Liu Y, Wang R, Lyu Y, Li H, Chen L. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ Sci 2014;7:677.

94. Hou Y, Wang J, Liu L, et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv Funct Mater 2017;27:1700564.

95. Németh K, Srajer G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries. RSC Adv 2014;4:1879-85.

96. Németh K, Srajer G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal-air type rechargeable batteries. RSC Adv 2014;4:1879-85.

97. Ehteshami SMM, Chan S. The role of hydrogen and fuel cells to store renewable energy in the future energy network - potentials and challenges. Energy Policy 2014;73:103-9.

98. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

99. Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science 1995;270:590-3.

100. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE. Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 2000;147:2845.

101. Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev 2013;113:3766-98.

102. Liu M, Kutana A, Liu Y, Yakobson BI. First-principles studies of Li nucleation on graphene. J Phys Chem Lett 2014;5:1225-9.

103. Seo MH, Choi SM, Lim EJ, et al. Toward new fuel cell support materials: a theoretical and experimental study of nitrogen-doped graphene. ChemSusChem 2014;7:2609-20.

104. Kim D, Liu X, Yu B, et al. Amine-functionalized boron nitride nanosheets: a new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number. Adv Funct Mater 2020;30:1910813.

105. Xiong J, Zhu W, Li H, et al. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chem 2015;17:1647-56.

106. Wang X, Zeng Z, Ahn H, Wang G. First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl Phys Lett 2009;95:183103.

107. Chou S, Wang J, Choucair M, Liu H, Stride JA, Dou S. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem commun 2010;12:303-6.

108. Zhao N, Yang L, Zhang P, et al. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries. Mater Lett 2010;64:972-5.

109. Winter M, Besenhard JO. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 1999;45:31-50.

110. Julien C, Mauger A, Zaghib K, Groult H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014;2:132-54.

111. Ge M, Cao C, Biesold GM, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv Mater 2021;33:e2004577.

112. Yang C, Zhang Y, Zhou J, et al. Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. J Mater Chem A 2018;6:8039-46.

113. Zhou Y, Guo H, Wang Z, Li X, Zhou R, Peng W. Improved electrochemical performance of Si/C material based on the interface stability. J Alloys Compd 2017;725:1304-12.

114. Wang Z, Zhou L, Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 2012;24:1903-11.

115. Adams BD, Radtke C, Black R, Trudeau ML, Zaghib K, Nazar LF. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ Sci 2013;6:1772.

116. Seh ZW, Yu JH, Li W, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun 2014;5:5017.

117. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Stor Mater 2018;10:246-67.

118. May GJ, Davidson A, Monahov B. Lead batteries for utility energy storage: a review. J Energy Storage 2018;15:145-57.

119. Neuville S. Differentiated carbon material for energy storage and conversion. Mater Today Proc 2018;5:13837-45.

120. Ullah S, Denis PA, Sato F. Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a DFT study. Appl Mater Today 2017;9:333-40.

121. Pei F, Fu A, Ye W, et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 2019;13:8337-46.

122. Zhou L, Hou ZF, Gao B, Frauenheim T. Doped graphenes as anodes with large capacity for lithium-ion batteries. J Mater Chem A 2016;4:13407-13.

123. Wu H, Chang S, Liu X, et al. Sr-doped Li4Ti5O12 as the anode material for lithium-ion batteries. Solid State Ionics 2013;232:13-8.

124. Walz KA, Suyama AN, Suyama WE, et al. Characterization and performance of high power iron(VI) ferrate batteries. J Power Sources 2004;134:318-23.

125. Kao W, Haberichter SL, Patel P. Barium metaplumbate for lead/acid batteries. J Electrochem Soc 1994;141:3300-5.

126. Hertzberg B, Sviridov L, Stach EA, Gupta T, Steingart D. A manganese-doped barium carbonate cathode for alkaline batteries. J Electrochem Soc 2014;161:A835-40.

127. Tanaka U, Sogabe T, Sakagoshi H, Ito M, Tojo T. Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon 2001;39:931-6.

128. Wang Y, Ai X, Cao Y, Yang H. Exceptional electrochemical activities of amorphous Fe-B and Co-B alloy powders used as high capacity anode materials. Electrochem commun 2004;6:780-4.

129. Walter M, Kovalenko MV, Kravchyk KV. Challenges and benefits of post-lithium-ion batteries. New J Chem 2020;44:1677-83.

130. Shehzad K, Xu Y, Gao C, Duan X. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem Soc Rev 2016;45:5541-88.

131. Qie L, Chen WM, Wang ZH, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 2012;24:2047-50.

132. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010;39:228-40.

133. Dong Y, Wu Z, Ren W, Cheng H, Bao X. Graphene: a promising 2D material for electrochemical energy storage. Sci Bull 2017;62:724-40.

134. Béguin F, Chevallier F, Vix-guterl C, et al. Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon 2005;43:2160-7.

135. Chen JS, Wang Z, Dong XC, Chen P, Lou XW. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale 2011;3:2158-61.

136. Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ Sci 2011;4:668-74.

137. Uthaisar C, Barone V, Peralta JE. Lithium adsorption on zigzag graphene nanoribbons. J Appl Phys 2009;106:113715.

138. Liu Y, Wang X, Dong Y, Wang Z, Zhao Z, Qiu J. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J Mater Chem A 2014;2:16832-5.

139. Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008;3:31-5.

140. Boukamp BA, Lesh GC, Huggins RA. All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 1981;128:725-9.

141. Thakur M, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL. Gold-coated porous silicon films as anodes for lithium ion batteries. J Power Sources 2012;205:426-32.

142. Obrovac MN, Christensen L, Le DB, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc 2007;154:A849.

143. Lee S, Nam K, Jung H, Park C. Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes. Chem Eng J 2020;381:122619.

144. Xu H, Shi L, Wang Z, et al. Fluorine-doped tin oxide nanocrystal/reduced graphene oxide composites as lithium ion battery anode material with high capacity and cycling stability. ACS Appl Mater Interfaces 2015;7:27486-93.

145. Share K, Cohn AP, Carter R, Rogers B, Pint CL. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016;10:9738-44.

146. Ma Y, Yin G, Zuo P, Tan X, Gao Y, Shi P. A phosphorous additive for lithium-ion batteries. Electrochem Solid-State Lett 2008;11:A129.

147. Chung K, Kim W, Choi Y. Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries. J. Electroanal Chem 2004;566:263-7.

148. Zhao C, Chen H, Liu H, et al. Quantifying the reaction mechanisms of a high-capacity CuP2/C composite anode for potassium ion batteries. J Mater Chem A 2021;9:6274-83.

149. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Sn4+xP3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater 2014;26:4037-42.

150. Lim YR, Shojaei F, Park K, et al. Arsenic for high-capacity lithium- and sodium-ion batteries. Nanoscale 2018;10:7047-57.

151. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11.

152. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 2013;1:11163.

153. Xiao L, Cao Y, Xiao J, et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun (Camb) 2012;48:3321-3.

154. Yu DY, Prikhodchenko PV, Mason CW, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun 2013;4:2922.

155. Zhang K, Wang Y, Liu P, Li W. Chemical fabrication and electrochemical performance of Bi2S3-nanorods charged reduced graphene oxide. Mater Lett 2015;161:774-7.

156. Yang W, Wang H, Liu T, Gao L. A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater Lett 2016;167:102-5.

157. Li Y, Trujillo MA, Fu E, et al. Bismuth oxide: a new lithium-ion battery anode. J Mater Chem A Mater 2013:1.

158. Lu Y, Gasteiger HA, Parent MC, Chiloyan V, Shao-horn Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid-State Lett 2010;13:A69.

159. Chen JJ, Jia x, She QJ, et al. The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochim Acta 2010;55:8062-6.

160. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500-6.

161. Xiao J, Wang X, Yang X, et al. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater 2011;21:2840-6.

162. Fang X, Guo X, Mao Y, et al. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Chem Asian J 2012;7:1013-7.

163. Lu ZW, Wang YH, Dai Z, et al. One-pot sulfur-containing ion assisted microwave synthesis of reduced graphene oxide@nano-sulfur fibrous hybrids for high-performance lithium-sulfur batteries. Electrochim Acta 2019;325:134920.

164. Cui Y, Abouimrane A, Sun CJ, Ren Y, Amine K. Li-Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chem Commun (Camb) 2014;50:5576-9.

165. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew Chem Int Ed Engl 2013;52:8363-7.

166. Zeng L, Zeng W, Jiang Y, et al. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries. Adv Energy Mater 2015;5:1401377.

167. Eftekhari A. The rise of lithium-selenium batteries. Sustain Energy Fuels 2017;1:14-29.

168. Liu Y, Wang J, Xu Y, Zhu Y, Bigio D, Wang C. Lithium-tellurium batteries based on tellurium/porous carbon composite. J Mater Chem A 2014;2:12201-7.

169. He J, Chen Y, Lv W, et al. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries. ACS Nano 2016;10:8837-42.

170. Nakajima T. Fluorine compounds as energy conversion materials. J Fluor Chem 2013;149:104-11.

171. Cui D, Zheng Z, Peng X, Li T, Sun T, Yuan L. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J Power Sources 2017;362:20-6.

172. Zhang S, Zhang L, Wang W, Xue W. A Novel cathode material based on polyaniline used for lithium/sulfur secondary battery. Synth Met 2010;160:2041-4.

173. Niessen RH, Notten PL. Hydrogen storage in thin film magnesium–scandium alloys. J Alloys Compd 2005;404-406:457-60.

174. Amatucci G, Safari A, Shokoohi F, Wilkens B. Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries. Solid State Ionics 1993;60:357-65.

175. Zheng P, Liu T, Su Y, Zhang L, Guo S. TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Sci Rep 2016;6:36580.

176. Tao B, He J, Miao F. A hybrid sandwich structure of TiO2/N-graphene/Ag supported by ordered silicon nanowires and its application as lithium-ion battery electrodes. Mater Lett 2020;262:127046.

177. Ihsan M, Meng Q, Li L, et al. V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries. Electrochim Acta 2015;173:172-7.

178. Poullikkas A. A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 2013;27:778-88.

179. Wang C, Chen S, Xie H, Wei S, Wu C, Song L. Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv Energy Mater 2019;9:1802977.

180. Yang F, Zhu Y, Xia Y, et al. Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries. J Power Sources 2020;451:227767.

181. Zeng Y, Zhao T, An L, Zhou X, Wei L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J Power Sources 2015;300:438-43.

182. Cao Y, Xiao L, Wang W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 2011;23:3155-60.

183. Yensen N, Allen PB. Open source all-iron battery for renewable energy storage. HardwareX 2019;6:e00072.

184. Wang Z, Liu C. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015;11:277-93.

185. Lv L, Peng M, Wu L, et al. Progress in iron oxides based nanostructures for applications in energy storage. Nanoscale Res Lett 2021;16:138.

186. Zhang L, Wu HB, Lou XWD. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 2014;4:1300958.

187. Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 2017;11:5140-7.

188. Zheng M, Qiu D, Zhao B, et al. Mesoporous iron oxide directly anchored on a graphene matrix for lithium-ion battery anodes with enhanced strain accommodation. RSC Adv 2013;3:699-703.

189. Ma R, He L, Lu Z, Yang S, Xi L, Chung JCY. Large-scale fabrication of hierarchical α-Fe2O3 assemblies as high performance anode materials for lithium-ion batteries. CrystEngComm 2012;14:7882.

190. Zhu S, Fan L, Lu Y. Highly uniform Fe3O4 nanoparticle-rGO composites as anode materials for high performance lithium-ion batteries. RSC Adv 2017;7:54939-46.

191. Atar N, Eren T, Yola ML, Gerengi H, Wang S. Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics 2015;21:3185-92.

192. Qi S, Wu D, Dong Y, et al. Cobalt-based electrode materials for sodium-ion batteries. Chem Eng J 2019;370:185-207.

193. Schipper F, Erickson EM, Erk C, Shin J, Chesneau FF, Aurbach D. Review - recent advances and remaining challenges for lithium ion battery cathodes: I. nickel-rich, LiNixCoyMnzO2. J Electrochem Soc 2017;164:A6220-8.

194. Chang H, Bai Y, Song X, et al. Hydrothermal synthesis, structural elucidation and electrochemical properties of three nickel and cobalt based phosphonates as anode materials for lithium ion batteries. Electrochim Acta 2019;321:134647.

195. Asif M, Ali Z, Qiu H, Rashad M, Hou Y. Confined polysulfide shuttle by nickel disulfide nanoparticles encapsulated in graphene nanoshells synthesized by cooking oil. ACS Appl Energy Mater 2020;3:3541-52.

196. Sethuraman VA, Kowolik K, Srinivasan V. Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J Power Sources 2011;196:393-8.

197. Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M. Diamondoid-structured Cu-dicarboxylate-based metal-organic frameworks as high-capacity anodes for lithium-ion storage. Energy Technol 2014;2:921-7.

198. Fan M, Chen Y, Xie Y, et al. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv Funct Mater 2016;26:5019-27.

199. Li N, An R, Su Y, et al. The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J Mater Chem A 2013;1:9760.

200. Aziz MA, Shanmugam S. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery. J Power Sources 2017;337:36-44.

201. Li B, Wang Q, Zhang Y, Song Z, Yang D. Nickel-modified and zirconium-modified Li2MnO3 and applications in lithium-ion battery. Int J Electrochem Sci 2013;8:5396-406.

202. Lubimtsev AA, Kent PRC, Sumpter BG, Ganesh P. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. J Mater Chem A 2013;1:14951.

203. Zhang C, Beidaghi M, Naguib M, et al. Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem Mater 2016;28:3937-43.

204. Tolosa A, Krüner B, Fleischmann S, et al. Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes. J Mater Chem A 2016;4:16003-16.

205. Chang K, Chen W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011;5:4720-8.

206. Wang H, Lan X, Jiang D, et al. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J Power Sources 2015;283:187-94.

207. Morales J. Electrochemical studies of lithium and sodium intercalation in MoSe2. Solid State Ionics 1996;83:57-64.

208. Luo Y, Zhang Y, Zhao Y, et al. Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. J Mater Chem A 2015;3:17553-7.

209. Xiao Y, Zhang W. Adsorption mechanisms of Mo2CrC2 MXenes as potential anode materials for metal-ion batteries: a first-principles investigation. Appl Surf Sci 2020;513:145883.

210. He B, Dong B, Li H. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem commun 2007;9:425-30.

211. Zou G, Zhang Z, Guo J, et al. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces 2016;8:22280-6.

212. Nam SH, Shim H, Kim Y, Dar MA, Kim JG, Kim WB. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl Mater Interfaces 2010;2:2046-52.

213. Hwang H, Oh S, Kim H, Cho W, Cho B, Lee D. Characterization of Ag-doped vanadium oxide (AgxV2O5) thin film for cathode of thin film battery. Electrochim Acta 2004;50:485-9.

214. Liu Z, Zhang N, Wang Z, Sun K. Highly dispersed Ag nanoparticles (<10nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J Power Sources 2012;205:479-82.

215. Kumagai N, Kumagai N, Tanno K. Electrochemical and structural characteristics of tungstic acids as cathode materials for lithium batteries. Appl Phys A 1989;49:83-9.

216. Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K. WO3 hollow nanospheres for high-lithium storage capacity and good cyclability. Nano Energy 2012;1:503-8.

217. Gao J, Li L, Tan J, et al. Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett 2016;16:3780-7.

218. Zhu J, Xu Z, Lu B. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy 2014;7:114-23.

219. Lee M, Luo Y, Do J. Using PANI-PPDA/Au composite films as cathode of lithium secondary battery. J Power Sources 2005;146:340-4.

220. Zhao J, Yu K, Hu Y, et al. Discharge behavior of Mg-4wt%Ga-2wt%Hg alloy as anode for seawater activated battery. Electrochim Acta 2011;56:8224-31.

221. Eftekhari A, Moghaddam AB, Solati-hashjin M. Electrochemical properties of LiMn2O4 cathode material doped with an actinide. J Alloys Compd 2006;424:225-30.

222. Rauda IE, Augustyn V, Dunn B, Tolbert SH. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 2013;46:1113-24.

223. Pramudita JC, Aughterson R, Dose WM, Donne SW, Brand HEA, Sharma N. Using in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: A case study with an unconventional battery electrode (Gd2TiO5). J Mater Res 2015;30:381-9.

224. Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett 2012;12:904-9.

225. Xia J, Zhao H, Pang WK, et al. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries. Chem Sci 2018;9:3421-5.

226. El-metwaly F, Abou-sekkina M, Saad F, Khedr A. Synthesis, effect of γ-ray and electrical conductivity of uranium doped nano LiMn2O4 spinels for applications as positive electrodes in Li-ion rechargeable batteries. Mater Sci-Poland 2014;32:571-7.

227. Gogotsi Y. What nano can do for energy storage. ACS Nano 2014;8:5369-71.

228. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 2013;12:518-22.

229. Xie Y, Dall’Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014;8:9606-15.

230. Chen J, Song W, Hou H, et al. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 2015;25:6793-801.

231. Seh ZW, Yu JH, Li W, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun 2014;5:5017.

232. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013;5:263-75.

233. Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011;331:568-71.

234. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 2011;23:4248-53.

235. Shein IR, Ivanovskii AL. Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation. Micro Nano Lett 2013;8:59-62.

236. Tang H, Hu Q, Zheng M, et al. MXene-2D layered electrode materials for energy storage. Prog Nat Sci 2018;28:133-47.

237. Li J, Guo C, Li CM. Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries. ChemSusChem 2020;13:1047-70.

238. Kurtoglu M, Naguib M, Gogotsi Y, Barsoum MW. First principles study of two-dimensional early transition metal carbides. MRS Commun 2012;2:133-7.

239. Zhou J, Zha X, Chen FY, et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem Int Ed Engl 2016;55:5008-13.

240. Li N, Jiang Y, Zhou C, et al. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl Mater Interfaces 2019;11:38116-25.

241. Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013;4:1716.

242. Zhou J, Zha X, Zhou X, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 2017;11:3841-50.

243. Ahmed B, Anjum DH, Gogotsi Y, Alshareef HN. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017;34:249-56.

244. Zhang Z, Guo H, Li W, Liu G, Zhang Y, Wang Y. Sandwich-like Co3O4/MXene composites as high capacity electrodes for lithium-ion batteries. New J Chem 2020;44:5913-20.

245. Lin Z, Sun D, Huang Q, Yang J, Barsoum MW, Yan X. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem A 2015;3:14096-100.

246. Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater 2015;27:3501-6.

247. Ren CE, Zhao M, Makaryan T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 2016;3:689-93.

248. Wu X, Wang Z, Yu M, Xiu L, Qiu J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater 2017;29:1607017.

249. Rakhi RB, Ahmed B, Anjum D, Alshareef HN. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl Mater Interfaces 2016;8:18806-14.

250. Huang H, Cui J, Liu G, Bi R, Zhang L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019;13:3448-56.

251. Schedy A, Quarthal D, Oetken M. Graphene - exciting insights into the synthesis and chemistry of the miracle material of the 21st century and its implementation in chemistry lessons for the first time. WJCE 2018;6:43-53.

252. Brodie BC. On the atomic weight of graphite. Phil Trans R Soc 1859;149:249-59.

253. Andre Mkhoyan K, Contryman AW, Silcox J, et al. Atomic and electronic structure of graphene-oxide. Nano Lett 2009;9:1058-63.

254. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 2008;8:2277-82.

255. Li B, Cao H, Shao J, Li G, Qu M, Yin G. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg Chem 2011;50:1628-32.

256. Su D, Ahn HJ, Wang G. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun (Camb) 2013;49:3131-3.

257. Berchmans S, Bandodkar AJ, Jia W, Ramírez J, Meng YS, Wang J. An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics. J Mater Chem A 2014;2:15788-95.

258. Xia X, Obrovac MN, Dahn JR. Comparison of the reactivity of NaxC6 and LixC6 with non-aqueous solvents and electrolytes. Electrochem Solid-State Lett 2011;14:A130.

259. Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J Energy Chem 2021;59:83-99.

260. Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manag 2019;182:262-81.

261. Finegan DP, Darst J, Walker W, et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells. J Power Sources 2019;417:29-41.

262. Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 2020;3:57-94.

263. Maleki H, Deng G, Anani A, Howard J. Thermal stability studies of Li-ion cells and components. J Electrochem Soc 1999;146:3224-9.

264. Masias A, Marcicki J, Paxton WA. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 2021;6:621-30.

265. Weber R, Genovese M, Louli AJ, et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat Energy 2019;4:683-9.

266. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.

267. Masias A, Felten N, Sakamoto J. Characterizing the mechanical behavior of lithium in compression. J Mater Res 2021;36:729-39.

268. Hatzell KB, Chen XC, Cobb CL, et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett 2020;5:922-34.

269. Hitz GT, Mcowen DW, Zhang L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today 2019;22:50-7.

270. Ely T, Kamzabek D, Chakraborty D. Batteries safety: recent progress and current challenges. Front Energy Res 2019;7:71.

271. Sendek AD, Cubuk ED, Antoniuk ER, Cheon G, Cui Y, Reed EJ. Machine learning-assisted discovery of solid Li-ion conducting materials. Chem Mater 2019;31:342-52.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/