REFERENCES

1. Choi C, Ashby DS, Butts DM, et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 2020;5:5-19.

2. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18:252-64.

3. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev 2018;118:11433-56.

4. Liu C, Neale ZG, Cao G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 2016;19:109-23.

5. Assat G, Tarascon J. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy 2018;3:373-86.

6. Moghadam Y, Masoudpanah S, Alamolhoda S, Daneshtalab R. Electrochemical properties of LiMn1.5Ni0.5O4 powders synthesized by solution combustion method: Effect of CTAB as a fuel. Advanced Powder Technology 2020;31:639-44.

7. Moghadam Y, El Kharbachi A, Diemant T, Melinte G, Hu Y, Fichtner M. Toward better stability and reversibility of the Mn4+/Mn2+ double redox activity in disordered rocksalt oxyfluoride cathode materials. Chem Mater 2021;33:8235-47.

8. Hu S, Pillai AS, Liang G, et al. Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem Energ Rev 2019;2:277-311.

9. Thackeray MM, Kang S, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 2007;17:3112.

10. Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 2013;12:827-35.

11. McCalla E, Abakumov AM, Saubanère M, et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015;350:1516-21.

12. Zhou YN, Ma J, Hu E, et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat Commun 2014;5:5381.

13. Li B, Jiang N, Huang W, Yan H, Zuo Y, Xia D. Thermodynamic Activation of charge transfer in anionic redox process for Li-Ion batteries. Adv Funct Mater 2018;28:1704864.

14. House RA, Marie J, Pérez-osorio MA, Rees GJ, Boivin E, Bruce PG. The role of O2 in O-redox cathodes for Li-ion batteries. Nat Energy 2021;6:781-9.

15. Hu E, Yu X, Lin R, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat Energy 2018;3:690-8.

16. Lei Y, Ni J, Hu Z, et al. Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization. Adv Energy Mater 2020;10:2002506.

17. Sun Z, Xu L, Dong C, et al. Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. J Mater Chem A 2019;7:3375-83.

18. Chen L, Su Y, Chen S, et al. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Adv Mater 2014;26:6756-60.

19. Sun G, Yu F, Que L, et al. Local electronic structure modulation enhances operating voltage in Li-rich cathodes. Nano Energy 2019;66:104102.

20. Hwang J, Myeong S, Lee E, et al. Lattice-oxygen-stabilized Li- and Mn-rich cathodes with sub-micrometer particles by modifying the excess-Li distribution. Adv Mater 2021;33:e2100352.

21. Liu W, Li J, Li W, Xu H, Zhang C, Qiu X. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat Commun 2020;11:3629.

22. Ji X, Xia Q, Xu Y, Feng H, Wang P, Tan Q. A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries. J Power Sources 2021;487:229362.

23. Cui S, Gao M, Li G, Gao X. Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv Energy Mater 2022;12:2003885.

24. He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;33:e2005937.

25. Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem 2016;8:692-7.

26. Wang Q, Mariyappan S, Rousse G, et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat Mater 2021;20:353-61.

27. Song J, Yoon G, Kim B, et al. Anionic redox activity regulated by transition metal in lithium-rich layered oxides. Adv Energy Mater ; doi: 10.1002/aenm.202001207.

28. Zhuo Z, Dai K, Wu J, et al. Distinct oxygen redox activities in Li2MO3 (M = Mn, Ru, Ir). ACS Energy Lett 2021;6:3417-24.

29. Hong J, Gent WE, Xiao P, et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat Mater 2019;18:256-65.

30. Zhang K, Jiang Z, Ning F, et al. Metal-ligand π interactions in lithium-rich Li2RhO3 cathode material activate bimodal anionic redox. Adv Energy Mater 2021;11:2100892.

31. Yu Z, Qu X, Dou A, Su M, Liu Y, Wu F. Synthesis and redox mechanism of cation-disordered, rock-salt cathode-material Li-Ni-Ti-Nb-O compounds for a Li-Ion battery. ACS Appl Mater Interfaces 2019;11:35777-87.

32. Xie Y, Saubanère M, Doublet M. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ Sci 2017;10:266-74.

33. Ouyang C, Shi S, Lei M. Jahn-Teller distortion and electronic structure of LiMn2O4. J Alloys Compd 2009;474:370-4.

34. Liu S, Wang B, Zhang X, Zhao S, Zhang Z, Yu H. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 2021;4:1511-27.

35. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 2011;23:3614-21.

36. Yu X, Lyu Y, Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 2014;4:1300950.

37. Yu H, Ishikawa R, So YG, et al. Direct atomic-resolution observation of two phases in the Li(1.2)Mn(0.567)Ni(0.166)Co(0.067)O2 cathode material for lithium-ion batteries. Angew Chem Int Ed Engl 2013;52:5969-73.

38. Xiao L, Xiao J, Yu X, et al. Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy 2015;16:143-51.

39. Sun Y, Cong H, Zan L, Zhang Y. Oxygen vacancies and stacking faults introduced by low-temperature reduction improve the electrochemical properties of Li2MnO3 nanobelts as lithium-ion battery cathodes. ACS Appl Mater Interfaces 2017;9:38545-55.

40. Shunmugasundaram R, Arumugam RS, Dahn JR. A study of stacking faults and superlattice ordering in some Li-rich layered transition metal oxide positive electrode materials. J Electrochem Soc 2016;163:A1394-400.

41. House RA, Rees GJ, Pérez-osorio MA, et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat Energy 2020;5:777-85.

42. Zhuo H, Liu Y, Wang Z, et al. Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure. Nano Energy 2021;83:105812.

43. Zhang J, Cheng F, Chou S, et al. Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement. Adv Mater 2019;31:e1901808.

44. Song J, Li B, Chen Y, et al. A high-performance Li-Mn-O Li-rich cathode material with rhombohedral symmetry via intralayer Li/Mn disordering. Adv Mater 2020;32:e2000190.

45. Ning F, Li B, Song J, et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat Commun 2020;11:4973.

46. Li X, Qiao Y, Guo S, Jiang K, Ishida M, Zhou H. A new type of Li-rich rock-salt oxide Li2Ni1/3Ru2/3O3 with reversible anionic redox chemistry. Adv Mater 2019;31:e1807825.

47. Liu S, Liu Z, Shen X, et al. Li-Ti cation mixing enhanced structural and performance stability of Li-rich layered oxide. Adv Energy Mater 2019;9:1901530.

48. Li N, Sun M, Kan WH, et al. Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nat Commun 2021;12:2348.

49. Zhao E, Li Q, Meng F, et al. Stabilizing the oxygen lattice and reversible oxygen redox chemistry through structural dimensionality in lithium-rich cathode oxides. Angew Chem Int Ed Engl 2019;58:4323-7.

50. Lee J, Yang Y, Jeong M, et al. Superior rate capability and cycling stability in partially cation-disordered co-free Li-rich layered materials enabled by an initial activation process. Chem Mater 2021;33:5115-26.

51. Liang C, Kong F, Longo RC, et al. Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C 2016;120:6383-93.

52. Zheng J, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett 2014;14:2628-35.

53. Liu Q, Zhu H, Liu J, et al. High-performance lithium-rich layered oxide material: effects of preparation methods on microstructure and electrochemical properties. Materials (Basel) 2020;13:334.

54. Wu T, Liu X, Zhang X, et al. Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries. Adv Mater 2021;33:e2001358.

55. Toney MF. Li gradients for Li-rich cathodes. Nat Energy 2019;4:1014-5.

56. Xu CL, Xiang W, Wu ZG, et al. Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode. ACS Appl Mater Interfaces 2018;10:27821-30.

57. Zhu Z, Yu D, Yang Y, et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat Energy 2019;4:1049-58.

58. Yang J, Xia Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl Mater Interfaces 2016;8:1297-308.

59. Song Y, Zhao X, Wang C, et al. Insight into the atomic structure of Li2MnO3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance. J Mater Chem A 2017;5:11214-23.

60. Liu J, Liu J, Wang R, Xia Y. Degradation and structural evolution of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling. J Electrochem Soc 2013;161:A160-7.

61. Shi JL, Xiao DD, Ge M, et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater 2018;30:1705575.

62. Shen S, Hong Y, Zhu F, et al. Tuning electrochemical properties of Li-rich layered oxide cathodes by adjusting Co/Ni ratios and mechanism investigation using in situ X-ray diffraction and online continuous flow differential electrochemical mass spectrometry. ACS Appl Mater Interfaces 2018;10:12666-77.

63. Hua W, Wang S, Knapp M, et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat Commun 2019;10:5365.

64. Sun G, Yu FD, Zhao C, et al. Decoupling the voltage hysteresis of Li-rich cathodes: electrochemical monitoring, modulation anionic redox chemistry and theoretical verifying. Adv Funct Mater 2020;31:2002643.

65. Zhou Y, Cui H, Qiu B, et al. Sufficient oxygen redox activation against voltage decay in Li-rich layered oxide cathode materials. ACS Materials Lett 2021;3:433-41.

66. Wu F, Tian J, Su Y, et al. Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 2015;7:7702-8.

67. Ji H, Wu J, Cai Z, et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat Energy 2020;5:213-21.

68. Boivin E, Guerrini N, House RA, et al. The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes. Adv Funct Mater 2021;31:2003660.

69. Huang W, Lin C, Zhang M, et al. Revealing roles of Co and Ni in Mn-rich layered cathodes. Adv Energy Mater 2021;11:2102646.

70. Xiang X, Knight JC, Li W, Manthiram A. Understanding the effect of Co3+ substitution on the electrochemical properties of lithium-rich layered oxide cathodes for lithium-ion batteries. J Phys Chem C 2014;118:21826-33.

71. Yin C, Wan L, Qiu B, et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Mater 2021;35:388-99.

72. Okubo M, Mizuno Y, Yamada H, et al. Fast Li-Ion insertion into nanosized LiMn(2)O(4) without domain boundaries. ACS Nano 2010;4:741-52.

73. Peng H, Zhao SX, Huang C, Yu LQ, Fang ZQ, Wei GD. In situ construction of spinel coating on the surface of a lithium-rich manganese-based single crystal for inhibiting voltage fade. ACS Appl Mater Interfaces 2020;12:11579-88.

74. Su Y, Chen G, Chen L, et al. Exposing the {010} planes by oriented self-assembly with nanosheets to improve the electrochemical performances of Ni-rich Li[Ni0.8Co0.1Mn0.1]O2 microspheres. ACS Appl Mater Interfaces 2018;10:6407-14.

75. Wei GZ, Lu X, Ke FS, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 2010;22:4364-7.

76. Liu Y, Wang J, Wu J, et al. 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv Energy Mater 2019;10:1903139.

77. Shi S, Wang T, Cao M, Wang J, Zhao M, Yang G. Rapid self-assembly spherical Li1.2Mn0.56Ni0.16Co0.08O2 with improved performances by microwave hydrothermal method as cathode for lithium-ion batteries. ACS Appl Mater Interfaces 2016;8:11476-87.

78. Trevisanello E, Ruess R, Conforto G, Richter FH, Janek J. Polycrystalline and single crystalline NCM cathode materials-quantifying particle cracking, active surface area, and lithium diffusion. Adv Energy Mater 2021;11:2003400.

79. Xu X, Huo H, Jian J, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv Energy Mater 2019;9:1803963.

80. Csernica PM, Kalirai SS, Gent WE, et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat Energy 2021;6:642-52.

81. Koga H, Croguennec L, Ménétrier M, et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide L1.20 Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J Phys Chem C 2014;118:5700-9.

82. Nakayama K, Ishikawa R, Kobayashi S, Shibata N, Ikuhara Y. Dislocation and oxygen-release driven delithiation in Li2MnO3. Nat Commun 2020;11:4452.

83. Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem 2016;8:684-91.

84. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. J Am Chem Soc 2011;133:4404-19.

85. Strehle B, Kleiner K, Jung R, et al. The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J Electrochem Soc 2016;164:A400-6.

86. Tang M, Dalzini A, Li X, et al. Operando EPR for Simultaneous monitoring of anionic and cationic redox processes in Li-rich metal oxide cathodes. J Phys Chem Lett 2017;8:4009-16.

87. Li X, Qiao Y, Guo S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials. Adv Mater 2018;30:e1705197.

88. Gent WE, Lim K, Liang Y, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun 2017;8:2091.

89. Liu H, Chen Y, Hy S, et al. Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction. Adv Energy Mater 2016;6:1502143.

90. Mohanty D, Sefat AS, Kalnaus S, et al. Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 2013;1:6249.

91. Xu B, Fell CR, Chi M, Meng YS. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 2011;4:2223.

92. Gao Y, Ma J, Wang Z, Lu G, Chen L. Vacancy-induced MnO6 distortion and its impacts on structural transition of Li2MnO3. Phys Chem Chem Phys 2017;19:7025-31.

93. Yu H, So YG, Ren Y, et al. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries. J Am Chem Soc 2018;140:15279-89.

94. Radin MD, Vinckeviciute J, Seshadri R, Van der Ven A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat Energy 2019;4:639-46.

95. Kleiner K, Strehle B, Baker AR, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem Mater 2018;30:3656-67.

96. Cao S, Wu C, Xie X, et al. Suppressing the voltage decay based on a distinct stacking sequence of oxygen atoms for Li-rich cathode materials. ACS Appl Mater Interfaces 2021;13:17639-48.

97. Zuo Y, Li B, Jiang N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater 2018;30:e1707255.

98. Eum D, Kim B, Kim SJ, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater 2020;19:419-27.

99. Ma J, Zhou Y, Gao Y, et al. Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem Mater 2014;26:3256-62.

100. Grenier A, Kamm GE, Li Y, Chung H, Meng YS, Chapman KW. Nanostructure transformation as a signature of oxygen redox in Li-rich 3d and 4d cathodes. J Am Chem Soc 2021;143:5763-70.

101. Yan P, Zheng J, Tang ZK, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat Nanotechnol 2019;14:602-8.

102. Lin R, Hu E, Liu M, et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nat Commun 2019;10:1650.

103. Lee S, Jin W, Kim SH, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials. Angew Chem Int Ed Engl 2019;58:10478-85.

104. Xiao B, Liu H, Chen N, et al. Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials. Angew Chem Int Ed Engl 2020;59:14313-20.

105. Zheng J, Xu P, Gu M, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem Mater 2015;27:1381-90.

106. Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc Chem Res 2019;52:2201-9.

107. Liu P, Zhang H, He W, et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc 2019;141:10876-82.

108. Yang M, Jin J, Shen Y, Sun S, Zhao X, Shen X. Cation-disordered lithium-excess Li-Fe-Ti oxide cathode materials for enhanced Li-ion storage. ACS Appl Mater Interfaces 2019;11:44144-52.

109. Huang J, Zhong P, Ha Y, et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat Energy 2021;6:706-14.

110. Yang Z, Zhong J, Liu Y, Li Z, Li J, Yang K. Unveiling the effect of voltage regulation system on the structure and electrochemical properties of lithium-rich cathode materials. J Electrochem Soc 2019;166:A1481-9.

111. Nayak PK, Grinblat J, Levi M, Aurbach D. Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries. Electrochimica Acta 2014;137:546-56.

112. Li N, Wu J, Hwang S, et al. Enabling facile anionic kinetics through cationic redox mediator in Li-rich layered cathodes. ACS Energy Lett 2020;5:3535-43.

113. Saha S, Assat G, Sougrati MT, et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat Energy 2019;4:977-87.

114. Hou P, Li F, Sun Y, Li H, Xu X, Zhai T. Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl Mater Interfaces 2018;10:24508-15.

115. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater 2009;8:320-4.

116. Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J Power Sources 2013;236:250-8.

117. Nie L, Liang C, Chen S, et al. Improved electrochemical performance of Li-rich layered oxide cathodes enabled by a two-step heat treatment. ACS Appl Mater Interfaces 2021;13:13281-8.

118. Liu J, Chen H, Xie J, Sun Z, Wu N, Wu B. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes. J Power Sources 2014;251:208-14.

119. Liu Y, Zhuo H, Yin Y, Lu S, Wang Z, Zhuang W. Remaining Li-content dependent structural evolution during high temperature re-heat treatment of quantitatively delithiated Li-rich cathode materials with surface defect-spinel phase. ACS Appl Mater Interfaces 2020;12:27226-40.

120. Cui SL, Zhang X, Wu XW, et al. Understanding the structure-performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective. ACS Appl Mater Interfaces 2020;12:47655-66.

121. Li Y, Feng X, Cui S, Shi Q, Mi L, Chen W. From α-NaMnO2 to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. CrystEngComm 2016;18:3136-41.

122. Liu Y, Chen Y, Wang J, et al. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res 2021; doi: 10.1007/s12274-021-3890-1.

123. Xu M, Fei L, Zhang W, et al. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett 2017;17:1670-7.

124. Yabuuchi N, Hara R, Kajiyama M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv Energy Mater 2014;4:1301453.

125. Heubner C, Matthey B, Lein T, et al. Insights into the electrochemical Li/Na-exchange in layered LiCoO2 cathode material. Energy Storage Mater 2020;27:377-86.

126. Shang H, Zuo Y, Shen F, et al. O2-type Li0.78[Li0.24Mn0.76]O2 nanowires for high-performance lithium-ion battery cathode. Nano Lett 2020;20:5779-85.

127. Yang Z, Zhong J, Feng J, Li J, Kang F. Highly reversible anion redox of manganese-based cathode material realized by electrochemical ion exchange for lithium-ion batteries. Adv Funct Materials 2021;31:2103594.

128. Paulsen JM, Thomas CL, Dahn JR. Layered Li-Mn-oxide with the O2 structure: a cathode material for Li-ion cells which does not convert to spinel. J Electrochem Soc 1999;146:3560-5.

129. Robertson AD, Armstrong AR, Bruce PG. Layered LixMn1-yCoyO2 intercalation electrodes influence of ion exchange on capacity and structure upon cycling. Chem Mater 2001;13:2380-6.

130. Liu S, Zhu H, Zhang B, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv Mater 2020;32:e2001113.

131. Yi T, Han X, Yang S, Zhu Y. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08-xAlxO2 (0≤x≤0.08) as cathode materials. Sci China Mater 2016;59:618-28.

132. Zhu J, Xiao G, Li X. Synthesis of Li(Ni0.6Co0.2Mn0.2)O2 by a modified sol-gel method for lithium-ion batteries. Synthetic Metals 2021;281:116905.

133. Xu G, Li J, Li X, et al. Understanding the electrochemical superiority of 0.6Li[Li1/3Mn2/3]O2-0.4Li[Ni1/3Co1/3Mn1/3]O2 nanofibers as cathode material for lithium ion batteries. Electrochimica Acta 2015;173:672-9.

134. Yu R, Zhang Z, Jamil S, et al. Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl Mater Interfaces 2018;10:16561-71.

135. Zhou H, Ding X, Liu G, Gao Z, Xu G, Wang X. Characterization of cathode from LiNixMn2-xO4 nanofibers by electrospinning for Li-ion batteries. RSC Adv 2015;5:108007-14.

136. Ding X, Zhou H, Liu G, Yin Z, Jiang Y, Wang X. Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method. J Alloys Compd 2015;632:147-51.

137. Zhou H, Ding X, Liu G, Jiang Y, Yin Z, Wang X. Preparation and characterization of ultralong spinel lithium manganese oxide nanofiber cathode via electrospinning method. Electrochimica Acta 2015;152:274-9.

138. Xu G, Li J, Li X, et al. The formation and electrochemical property of lithium-excess cathode material Li1.2Ni0.13Co0.13Mn0.54O2 with petal-like nanoplate microstructure. Ionics 2017;23:2285-91.

139. Liu H, Lei W, Tong Z, et al. Enhanced diffusion kinetics of Li ions in double-shell hollow carbon fibers. ACS Appl Mater Interfaces 2021;13:24604-14.

140. Zhou X, Wang F, Zhu Y, Liu Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 2011;21:3353.

141. Watanabe A, Matsumoto F, Fukunishi M, et al. Relationship between electrochemical pre-treatment and cycle performance of a Li-rich solid-solution layered Li1-α[Ni0.18Li0.20+αCo0.03Mn0.58]O2 cathode for Li-ion secondary batteries. Electrochemistry 2012;80:561-5.

142. Ito A, Li D, Ohsawa Y, Sato Y. A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. J Power Sources 2008;183:344-6.

143. Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 2010;195:567-73.

144. Wei Z, Xia Y, Qiu B, Zhang Q, Han S, Liu Z. Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium-rich manganese-based material. J Power Sources 2015;281:7-10.

145. Yang J, Xiao L, He W, et al. Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl Mater Interfaces 2016;8:18867-77.

146. Nayak PK, Grinblat J, Levi E, Markovsky B, Aurbach D. Effect of cycling conditions on the electrochemical performance of high capacity Li and Mn-rich cathodes for Li-ion batteries. J Power Sources 2016;318:9-17.

147. Pradon A, Caldes M, Petit P, et al. Revisiting the relevance of using a constant voltage step to improve electrochemical performances of Li-rich lamellar oxides. J Power Sources 2018;380:158-63.

148. Yin W, Grimaud A, Rousse G, et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat Commun 2020;11:1252.

149. Kaewmala S, Limphirat W, Yordsri V, et al. Rate dependent structural changes, cycling stability, and Li-ion diffusivity in a layered-layered oxide cathode material after prolonged cycling. J Mater Chem A 2021;9:14004-12.

150. Wang E, Zhao Y, Xiao D, et al. Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv Mater 2020;32:e1906070.

151. Yang K, Liu Y, Niu B, Yang Z, Li J. Oxygen vacancies in CeO2 surface coating to improve the activation of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. Ionics 2019;25:2027-34.

152. Li J, Li J, Yu T, et al. Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional Pr oxide surface modification. Ceram Int 2016;42:18620-30.

153. Ding F, Li J, Deng F, et al. Surface heterostructure induced by PrPO4 modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl Mater Interfaces 2017;9:27936-45.

154. Lu C, Wu H, Zhang Y, et al. Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 2014;267:682-91.

155. Lu C, Wu H, Chen B, Liu H, Zhang Y. Improving the electrochemical properties of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route. J Alloys Compd 2015;634:75-82.

156. Xue Q, Li J, Xu G, Zhou H, Wang X, Kang F. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J Mater Chem A 2014;2:18613-23.

157. Chen Y, Wang X, Zhang J, et al. Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes as cathode materials for high-performance lithium-ion batteries. RSC Adv 2019;9:2172-9.

158. Chen C, Geng T, Du C, et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 2016;331:91-9.

159. Liu Y, Yang Z, Li J, Niu B, Yang K, Kang F. A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2-σ cathode material for Li-ion batteries with improved initial irreversible capacity loss. J Mater Chem A 2018;6:13883-93.

160. Yang Z, Zhong J, Li J, Liu Y, Niu B, Kang F. Li-rich layered oxide coated by nanoscale MoOx film with oxygen vacancies and lower oxidation state as a high-performance cathode material. Ceram Int 2019;45:439-48.

161. Liu Y, Yang Z, Zhong J, et al. Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS Nano 2019;13:11891-900.

162. Si M, Wang D, Zhao R, et al. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv Sci (Weinh) 2020;7:1902538.

163. Zhang W, Sun Y, Deng H, et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv Mater 2020;32:e2000496.

164. Hu S, Li Y, Chen Y, et al. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Adv Energy Mater 2019;9:1901795.

165. Cao J, Xie H, Lv F, et al. Stable Li2TiO3 Shell-Li1.17Mn0.50Ni0.16Co0.17O2 core architecture based on an in-site synchronous lithiation method as a high rate performance and long cycling life lithium-ion battery cathode. ACS Appl Energy Mater 2020;3:5462-71.

166. Yoon CS, Kim U, Park G, et al. Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. ACS Energy Lett 2018;3:1634-9.

167. Kong D, Hu J, Chen Z, et al. Ti‐gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv Energy Mater 2019;9:1901756.

168. Shang H, Ning F, Li B, Zuo Y, Lu S, Xia D. Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium. ACS Appl Mater Interfaces 2018;10:21349-55.

169. Lee Y, Shin J, Kang H, et al. Promoting the reversible oxygen redox reaction of Li-excess layered cathode materials with surface vanadium cation doping. Adv Sci (Weinh) 2021;8:2003013.

170. Liu S, Liu Z, Shen X, et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv Energy Mater 2018;8:1802105.

171. Zhong J, Yang Z, Yu Y, Liu Y, Li J, Kang F. Surface substitution of polyanion to improve structure stability and electrochemical properties of lithium-rich layered cathode oxides. Appl Surf Sci 2020;512:145741.

172. Xu G, Li J, Xue Q, et al. Enhanced oxygen reducibility of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material with mild acid treatment. J Power Sources 2014;248:894-9.

173. Qiu B, Zhang M, Wu L, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 2016;7:12108.

174. Ye Z, Zhang B, Chen T, et al. A simple gas-solid treatment for surface modification of Li-rich oxides cathodes. Angew Chem Int Ed Engl 2021;60:23248-55.

175. Zhang X, Cao S, Yu R, et al. Improving electrochemical performances of Li-rich layered Mn-based oxide cathodes through K2Cr2O7 solution treatment. ACS Appl Energy Mater 2019;2:1563-71.

176. Zhang XD, Shi JL, Liang JY, et al. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv Mater 2018:e1801751.

177. Hu K, Lv G, Zhang J, et al. Na2S treatment and coherent interface modification of the Li-rich cathode to address capacity and voltage decay. ACS Appl Mater Interfaces 2020;12:42660-8.

178. Zhang K, Sheng H, Wu X, et al. Improving electrochemical properties by sodium doping for lithium-rich layered oxides. ACS Appl Energy Mater 2020;3:8953-9.

179. Zhu Z, Wang H, Li Y, et al. A surface Se-substituted LiCo[O2-δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater 2020;32:e2005182.

180. Ahn J, Chen D, Chen G. A fluorination method for improving cation-disordered rocksalt cathode performance. Adv Energy Mater 2020;10:2001671.

181. Liu C, Wu M, Guo Z, et al. Preparation and characterization of Li1.167-xKxMn0.583Ni0.25O2 (x=0, 0.025, 0.05 and 0.075) as cathode materials for highly reversible lithium-ion batteries. Electrochimica Acta 2020;341:136014.

182. Li B, Yan H, Ma J, et al. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Funct Mater 2014;24:5112-8.

183. Wu F, Kim G, Kuenzel M, et al. Elucidating the effect of iron doping on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv Energy Mater 2019;9:1902445.

184. Nayak PK, Grinblat J, Levi M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 2016;6:1502398.

185. Jiang Y, Sun G, Yu F, et al. Surface modification by fluorine doping to increase discharge capacity of Li1.2Ni0.2Mn0.6O2 cathode materials. Ionics 2020;26:151-61.

186. Li Y, Xie L, Zheng Z, et al. Hybridizing Li@Mn6 and Sb@Ni6 superstructure units to tune the electrochemical performance of Li-rich layered oxides. Nano Energy 2020;77:105157.

187. Wang T, Zhang C, Li S, et al. Regulating anion redox and cation migration to enhance the structural stability of Li-rich layered oxides. ACS Appl Mater Interfaces 2021;13:12159-68.

188. Yu F, Que L, Xu C, et al. Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries. Nano Energy 2019;59:527-36.

189. Luo S, Wang K, Wang J, Jiang K, Li Q, Fan S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 2012;24:2294-8.

190. Zhang T, Li JT, Liu J, et al. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem Commun (Camb) 2016;52:4683-6.

191. Yang J, Li P, Zhong F, et al. Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv Energy Mater 2020;10:1904264.

192. Choi Y, Zhang K, Chung KY, Wang DH, Park JH. PVdF-HFP/exfoliated graphene oxide nanosheet hybrid separators for thermally stable Li-ion batteries. RSC Adv 2016;6:80706-11.

193. Shin WK, Kannan AG, Kim DW. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl Mater Interfaces 2015;7:23700-7.

194. Zhang J, Meng Z, Yang D, et al. Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. J Energy Chem 2022;68:27-34.

195. Qi S, Mi L, Song K, et al. Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J Phys Chem C 2019;123:2775-82.

196. Martha SK, Nanda J, Veith GM, Dudney NJ. Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 2012;216:179-86.

197. Cui C, Fan X, Zhou X, et al. Structure and interface design enable stable Li-rich cathode. J Am Chem Soc 2020;142:8918-27.

198. Lou S, Ma Y, Zhou Z, et al. Unravelling the enhanced high-temperature performance of lithium-rich oxide cathode with methyl diphenylphosphinite as electrolyte additive. ChemElectroChem 2018;5:1569-75.

199. Yue Y, Li N, Li L, et al. Redox behaviors in a Li-excess cation-disordered Mn-Nb-O-F rocksalt cathode. Chem Mater 2020;32:4490-8.

200. Yu T, Li J, Xu G, Li J, Ding F, Kang F. Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ionics 2017;301:64-71.

201. Redel K, Kulka A, Plewa A, Molenda J. High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries. J Electrochem Soc 2019;166:A5333-42.

202. Hy S, Felix F, Rick J, Su WN, Hwang BJ. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). J Am Chem Soc 2014;136:999-1007.

203. Sathiya M, Leriche JB, Salager E, Gourier D, Tarascon JM, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat Commun 2015;6:6276.

204. Xu J, Sun M, Qiao R, et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat Commun 2018;9:947.

205. Zhang J, Wang Q, Li S, et al. Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide. Nat Commun 2020;11:6342.

206. Dai K, Wu J, Zhuo Z, et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 2019;3:518-41.

207. Shimoda K, Minato T, Nakanishi K, et al. Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy. J Mater Chem A 2016;4:5909-16.

208. Assat G, Iadecola A, Foix D, Dedryvère R, Tarascon J. Direct quantification of anionic redox over long cycling of Li-rich NMC via hard X-ray photoemission spectroscopy. ACS Energy Lett 2018;3:2721-8.

209. Abate II, Pemmaraju CD, Kim SY, et al. Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy Environ Sci 2021;14:4858-67.

210. House RA, Maitra U, Pérez-Osorio MA, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020;577:502-8.

211. Carlier D, Saadoune I, Ménétrier M, Delmas C. Lithium electrochemical deintercalation from O2-LiCoO2. J Electrochem Soc 2002;149:A1310.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/