REFERENCES

1. Zou C, Zhao Q, Zhang G, Xiong B. Energy revolution: from a fossil energy era to a new energy era. Natural Gas Industry B 2016;3:1-11.

2. Sims R. Renewable energy: a response to climate change. Solar Energy 2004;76:9-17.

3. Wang Z, Carriveau R, Ting DS, Xiong W, Wang Z. A review of marine renewable energy storage. Int J Energy Res 2018;43:6108-50.

4. Opan M, Ünlü M, Özkale C, Çelik C, Saraç Hİ. Optimal energy production from wind and hydroelectric power plants. Energ Source Part A 2019;41:2219-32.

5. Zhu X, Hao J, Bao B, et al. Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system. Sci Adv 2018;4:eaau1665.

6. Nijmeijer K, Metz S. Chapter 5 salinity gradient energy. Sustainability Science and Engineering 2010;2:95-139.

7. Yip NY, Elimelech M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ Sci Technol 2012;46:5230-9.

8. Economides MJ, Wood DA. The state of natural gas. J Nat Gas Sci Eng 2009;1:1-13.

9. Aslam M, Masjuki H, Kalam M, Abdesselam H, Mahlia T, Amalina M. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle. Fuel 2006;85:717-24.

10. Schaetzle O, Buisman CJ. Salinity gradient energy: current state and new trends. Engineering 2015;1:164-6.

11. Avci AH, Tufa RA, Fontananova E, Di Profio G, Curcio E. Reverse Electrodialysis for energy production from natural river water and seawater. Energy 2018;165:512-21.

12. Post JW, Hamelers HV, Buisman CJ. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ Sci Technol 2008;42:5785-90.

13. Mei Y, Tang CY. Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 2018;425:156-74.

14. Talavera K, Nilius B, Voets T. Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends Neurosci 2008;31:287-95.

15. Xu J, Lavan DA. Designing artificial cells to harness the biological ion concentration gradient. Nat Nanotechnol 2008;3:666-70.

16. Sparreboom W, van den Berg A, Eijkel JC. Principles and applications of nanofluidic transport. Nat Nanotechnol 2009;4:713-20.

17. Zhu J, Wang L, Wang J, et al. Precisely tunable ion sieving with an Al13-Ti3C2Tx lamellar membrane by controlling interlayer spacing. ACS Nano 2020;14:15306-16.

18. Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew Chem 2017;129:9889-93.

19. Wang H, He S, Qin X, Li C, Li T. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes. J Am Chem Soc 2018;140:17203-10.

20. Ji YL, Gu BX, Xie SJ, et al. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal-organic frameworks. Adv Mater 2021;33:e2102292.

21. Luan P, Zhao Y, Li Q, et al. Compressible ionized natural 3D interconnected loofah membrane for salinity gradient power generation. Small 2022;18:e2104320.

22. Zhang X, Wen Q, Wang L, et al. Asymmetric electrokinetic proton transport through 2D nanofluidic heterojunctions. ACS Nano 2019;13:4238-45.

23. Zhang Q, Liu Q, Kang J, et al. Robust sandwich-structured nanofluidic diodes modulating ionic transport for an enhanced electrochromic performance. Adv Sci (Weinh) 2018;5:1800163.

24. Xiao K, Jiang L, Antonietti M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019;3:2364-80.

25. Xie G, Li P, Zhao Z, et al. Light- and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport. J Am Chem Soc 2018;140:4552-9.

26. Guo W, Cao L, Xia J, et al. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv Funct Mater 2010;20:1339-44.

27. Zhang Z, Yang S, Zhang P, Zhang J, Chen G, Feng X. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat Commun 2019;10:2920.

28. Ding L, Li L, Liu Y, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat Sustain 2020;3:296-302.

29. Zhang Q, Liu Z, Hou X, Fan X, Zhai J, Jiang L. Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. Chem Commun (Camb) 2012;48:5901-3.

30. Zhang Q, Liu Z, Wang K, Zhai J. Organic/inorganic hybrid nanochannels based on Polypyrrole-embedded alumina nanopore arrays: pH- and light-modulated ion transport. Adv Funct Mater 2015;25:2091-8.

31. Macha M, Marion S, Nandigana VVR, Radenovic A. 2D materials as an emerging platform for nanopore-based power generation. Nat Rev Mater 2019;4:588-605.

32. Li R, Fan X, Liu Z, Zhai J. Smart Bioinspired nanochannels and their applications in energy-conversion systems. Adv Mater 2017;29:1702983.

33. Liu P, Hou J, Zhang Y, Li L, Lu X, Tang Z. Two-dimensional material membranes for critical separations. Inorg Chem Front 2020;7:2560-81.

34. Gao J, Feng Y, Guo W, Jiang L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem Soc Rev 2017;46:5400-24.

35. Koltonow AR, Huang J. IONIC TRANSPORT. Two-dimensional nanofluidics. Science 2016;351:1395-6.

36. Schoch RB, Renaud P. Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 2005;86:253111.

37. Zhang Q, Kang J, Xie Z, Diao X, Liu Z, Zhai J. Highly efficient gating of electrically actuated nanochannels for pulsatile drug delivery stemming from a reversible wettability switch. Adv Mater 2018;30:1703323.

38. Hao Z, Zhou T, Xiao T, et al. Electrochromic nanochannels for visual nanofluidic manipulation in integrated ionic circuits. ACS Appl Mater Interfaces 2020;12:57314-21.

39. Cao L, Xiao F, Feng Y, et al. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv Funct Mater 2017;27:1604302.

40. Asghar W, Ilyas A, Billo JA, Iqbal SM. Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Res Lett 2011;6:372.

41. Ho C, Qiao R, Heng JB, et al. Electrolytic transport through a synthetic nanometer-diameter pore. Proc Natl Acad Sci U S A 2005;102:10445-50.

42. Apel P. Track etching technique in membrane technology. Radiation Measurements 2001;34:559-66.

43. Zhang B, Zhang Y, White HS. The nanopore electrode. Anal Chem 2004;76:6229-38.

44. Martin CR, Nishizawa M, Jirage K, Kang M. Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 2001;105:1925-34.

45. Karahan HE, Goh K, Zhang CJ, et al. MXene materials for designing advanced separation membranes. Adv Mater 2020;32:e1906697.

46. Childs RF, Weng J, Kim M, Dickson JM. Formation of pore-filled microfiltration membranes using a combination of modified interfacial polymerization and grafting. J Polym Sci A Polym Chem 2002;40:242-50.

47. Dreyer DR, Todd AD, Bielawski CW. Harnessing the chemistry of graphene oxide. Chem Soc Rev 2014;43:5288-301.

48. Xin W, Xiao H, Kong XY, et al. Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting. ACS Nano 2020;14:9701-10.

49. Ding L, Xiao D, Lu Z, et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew Chem 2020;132:8798-804.

50. Ji J, Kang Q, Zhou Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv Funct Mater 2017;27:1603623.

51. Chen J, Xin W, Chen W, et al. Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Cent Sci 2021;7:1486-92.

52. Wu C, Xiao T, Tang J, et al. Biomimetic temperature-gated 2D cationic nanochannels for controllable osmotic power harvesting. Nano Energy 2020;76:105113.

53. Liu J, Wang N, Yu LJ, et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat Commun 2017;8:2011.

54. Man Z, Safaei J, Zhang Z, et al. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J Am Chem Soc 2021;143:16206-16.

55. Wang Y, Wu N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation. Nat Commun 2019;10:2500.

56. Huang H, Song Z, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 2013;4:2979.

57. Abraham J, Vasu KS, Williams CD, et al. Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 2017;12:546-50.

58. Ma M, Tocci G, Michaelides A, Aeppli G. Fast diffusion of water nanodroplets on graphene. Nat Mater 2016;15:66-71.

59. Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 2013;47:3715-23.

60. Joshi RK, Carbone P, Wang FC, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014;343:752-4.

61. Yin Z, Lu Z, Xu Y, et al. Supported MXene/GO composite membranes with suppressed swelling for metal ion sieving. Membranes (Basel) 2021;11:621.

62. Guo W, Tian Y, Jiang L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc Chem Res 2013;46:2834-46.

63. Bohinc K, Kralj-iglič V, Iglič A. Thickness of electrical double layer. Effect of ion size. Electrochimica Acta 2001;46:3033-40.

64. Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 2004;93:035901.

65. Hao Q, Zhao C, Sun B, et al. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J Am Chem Soc 2018;140:12152-8.

66. Liu Y, Wei Y, Liu M, et al. Face-to-face growth of wafer-scale 2D semiconducting MOF films on dielectric substrates. Adv Mater 2021;33:e2007741.

67. Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat Nanotechnol 2017;12:509-22.

68. Ren CE, Alhabeb M, Byles BW, et al. Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes. ACS Appl Nano Mater 2018;1:3644-52.

69. Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009;457:706-10.

70. Shams SS, Zhang R, Zhu J. Graphene synthesis: a review. Mater Sci Pol 2015;33:566-78.

71. Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009;324:1312-4.

72. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008;3:563-8.

73. Edwards RS, Coleman KS. Graphene synthesis: relationship to applications. Nanoscale 2013;5:38-51.

74. Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 2011;6:95.

75. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80:1339.

76. Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano 2010;4:4806-14.

77. Roth WJ, Nachtigall P, Morris RE, Čejka J. Two-dimensional zeolites: current status and perspectives. Chem Rev 2014;114:4807-37.

78. Přech J, Pizarro P, Serrano DP, Čejka J. From 3D to 2D zeolite catalytic materials. Chem Soc Rev 2018;47:8263-306.

79. Hong M, Yu L, Wang Y, et al. Heavy metal adsorption with zeolites: the role of hierarchical pore architecture. Chemical Engineering Journal 2019;359:363-72.

80. Li S, Tuan VA, Falconer JL, Noble RD. Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane. Ind Eng Chem Res 2001;40:1952-9.

81. Agrawal KV, Topuz B, Jiang Z, et al. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J 2013;59:3458-67.

82. Roth WJ, Nachtigall P, Morris RE, et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat Chem 2013;5:628-33.

83. Mazur M, Wheatley PS, Navarro M, et al. Synthesis of ‘unfeasible’ zeolites. Nat Chem 2016;8:58-62.

84. Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J Membr Sci 2018;567:89-103.

85. Konch TJ, Dutta T, Neog AB, Gogoi R, Raidongia K. Uphill anion pumping through triangular nanofluidic device of reconstructed layered double hydroxide. J Phys Chem C 2021;125:17939-49.

86. Liu J, Yu L, Zhang Y. Fabrication and characterization of positively charged hybrid ultrafiltration and nanofiltration membranes via the in-situ exfoliation of Mg/Al hydrotalcite. Desalination 2014;335:78-86.

87. Shao JJ, Raidongia K, Koltonow AR, Huang J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat Commun 2015;6:7602.

88. Gogoi RK, Raidongia K. Intercalating cation specific self-repairing of vermiculite nanofluidic membrane. J Mater Chem A 2018;6:21990-8.

89. Huang M, Chen Y, Yan X, Guo X, Dong L, Lang W. Two-dimensional Montmorillonite membranes with efficient water filtration. J Membr Sci 2020;614:118540.

90. Xiao T, Liu Q, Zhang Q, Liu Z, Zhai J. Temperature and voltage dual-responsive ion transport in bilayer-intercalated layered membranes with 2D nanofluidic channels. J Phys Chem C 2017;121:18954-61.

91. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992-1005.

92. Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322-31.

93. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2016;2:1600255.

94. Qian HL, Yang CX, Yan XP. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 2016;7:12104.

95. Pang ZF, Zhou TY, Liang RR, Qi QY, Zhao X. Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chem Sci 2017;8:3866-70.

96. Wan S, Guo J, Kim J, Ihee H, Jiang D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed Engl 2008;47:8826-30.

97. Shinde DB, Kandambeth S, Pachfule P, Kumar RR, Banerjee R. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem Commun (Camb) 2015;51:310-3.

98. Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. An azine-linked covalent organic framework. J Am Chem Soc 2013;135:17310-3.

99. Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. Highly emissive covalent organic frameworks. J Am Chem Soc 2016;138:5797-800.

100. Jin S, Sakurai T, Kowalczyk T, et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts. Chemistry 2014;20:14608-13.

101. Dalapati S, Addicoat M, Jin S, et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat Commun 2015;6:7786.

102. Jin S, Ding X, Feng X, et al. Charge Dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew Chem 2013;125:2071-5.

103. Jin S, Furukawa K, Addicoat M, et al. Large pore donor-acceptor covalent organic frameworks. Chem Sci 2013;4:4505.

104. Calik M, Auras F, Salonen LM, et al. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J Am Chem Soc 2014;136:17802-7.

105. Chandra S, Kandambeth S, Biswal BP, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc 2013;135:17853-61.

106. Berlanga I, Ruiz-González ML, González-Calbet JM, Fierro JL, Mas-Ballesté R, Zamora F. Delamination of layered covalent organic frameworks. Small 2011;7:1207-11.

107. Dey K, Pal M, Rout KC, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J Am Chem Soc 2017;139:13083-91.

108. Wang T, Wu H, Zhao S, et al. Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation. Chem Eng J 2020;384:123347.

109. Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016;539:76-80.

110. Hao Z, Wu Y, Zhao Q, et al. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv Funct Mater 2021;31:2102938.

111. Gallego A, Hermosa C, Castillo O, et al. Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv Mater 2013;25:2141-6.

112. Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun 2017;8:14460.

113. Peng Y, Li Y, Ban Y, et al. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014;346:1356-9.

114. Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Surface nano-architecture of a metal-organic framework. Nat Mater 2010;9:565-71.

115. Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 2015;10:313-8.

116. Li XL, Li TC, Huang S, Zhang J, Pam ME, Yang HY. Controllable synthesis of two-dimensional molybdenum disulfide (MoS2) for energy-storage applications. ChemSusChem 2020;13:1379-91.

117. Zhu C, Liu P, Niu B, et al. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes. J Am Chem Soc 2021;143:1932-40.

118. Cheng D, Wang H, Liu B, et al. Dielectric properties and energy-storage performance of two-dimensional molybdenum disulfide nanosheets/polyimide composite films. J Appl Polym Sci 2019;136:47991.

119. Hou S, Ji W, Chen J, Teng Y, Wen L, Jiang L. Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew Chem 2021;133:10013-8.

120. Mijatovic D, Eijkel JC, van den Berg A. Technologies for nanofluidic systems: top-down vs. bottom-up--a review. Lab Chip 2005;5:492-500.

121. Sun P, Zheng F, Zhu M, et al. Realizing synchronous energy harvesting and ion separation with graphene oxide membranes. Sci Rep 2014;4:5528.

122. Cheng H, Zhou Y, Feng Y, et al. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks. Adv Mater 2017;29:1700177.

123. Hong S, Ming F, Shi Y, et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 2019;13:8917-25.

124. Wu Y, Xin W, Kong X, et al. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater Horiz 2020;7:2702-9.

125. Zhang Z, Shen W, Lin L, et al. Vertically transported graphene oxide for high-performance osmotic energy conversion. Adv Sci (Weinh) 2020;7:2000286.

126. Liu P, Sun Y, Zhu C, et al. Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting. Nano Lett 2020;20:3593-601.

127. Xin W, Zhang Z, Huang X, et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat Commun 2019;10:3876.

128. Zhang Z, Zhang P, Yang S, et al. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc Natl Acad Sci U S A 2020;117:13959-66.

129. Li R, Jiang J, Liu Q, Xie Z, Zhai J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018;53:643-9.

130. Xiao K, Giusto P, Wen L, Jiang L, Antonietti M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew Chem Int Ed Engl 2018;57:10123-6.

131. Gao Z, Sun Z, Ahmad M, et al. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Carbohydr Polym 2022;280:119023.

132. Guo W, Cheng C, Wu Y, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 2013;25:6064-8.

133. Yang G, Lei W, Chen C, et al. Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation. Nano Energy 2020;75:104954.

134. Qu R, Zeng X, Lin L, et al. Vertically-oriented Ti3C2Tx MXene membranes for high performance of electrokinetic energy conversion. ACS Nano ;2020:16654-62.

135. Qin S, Liu D, Chen Y, et al. Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy 2018;47:368-73.

136. Tollefson J. Power from the oceans: blue energy. Nature 2014;508:302-4.

137. Wang ZL, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017;39:9-23.

138. Jie Y, Jia X, Zou J, et al. Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv Energy Mater 2018;8:1703133.

139. Lin ZH, Cheng G, Lin L, Lee S, Wang ZL. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew Chem Int Ed Engl 2013;52:12545-9.

140. Wen X, Yang W, Jing Q, Wang ZL. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014;8:7405-12.

141. Zhao Y, Wang J, Kong XY, et al. Corrigendum to Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Natl Sci Rev 2020;7:1793.

142. Hou S, Zhang Q, Zhang Z, et al. Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy 2021;79:105509.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/