REFERENCES

1. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

2. Li C, Zhang Z, Chen Y, et al. Architecting braided porous carbon fibers based on high-density catalytic crystal planes to achieve highly reversible sodium-ion storage. Adv Sci (Weinh) 2022:e2104780.

3. Zhang Z, Chen Y, Sun S, et al. Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage. J Mater Sci Technol 2022;119:167-81.

4. Pimlott JL, Street RJ, Down MP, Banks CE. Electrochemical overview: a summary of ACoxMnyNizO2 and metal oxides as versatile cathode materials for metal-ion batteries. Adv Funct Materials 2021;31:2107761.

5. Zhao H, Lam WA, Sheng L, et al. Cobalt-free cathode materials: families and their prospects. Adv Energy Mater 2022;12:2103894.

6. Lee W, Muhammad S, Sergey C, et al. Advances in the cathode materials for lithium rechargeable batteries. Angew Chem Int Ed Engl 2020;59:2578-605.

7. Chaudhary M, Tyagi S, Gupta RK, Singh BP, Singhal R. Surface modification of cathode materials for energy storage devices: a review. Surf Coat Technol 2021;412:127009.

8. Kim J, Zhang X, Zhang J, Manthiram A, Meng YS, Xu W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater Today 2021;46:155-82.

9. Xiao B, Omenya F, Reed D, Li X. A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities. Nanotechnology 2021;32:422501.

10. Kalluri S, Yoon M, Jo M, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater 2017;7:1601507.

11. Manthiram A, Goodenough JB. Layered lithium cobalt oxide cathodes. Nat Energy 2021;6:323.

12. Thackeray MM, Amine K. Layered Li-Ni-Mn-Co oxide cathodes. Nat Energy 2021;6:933.

13. Wang X, Bai Y, Wang X, Wu C. High-voltage layered ternary oxide cathode materials: failure mechanisms and modification methods. Chin J Chem 2020;38:1847-69.

14. Lv H, Li C, Zhao Z, Wu B, Mu D. A review: modification strategies of nickel-rich layer structure cathode (Ni ≥ 0.8) materials for lithium ion power batteries. J Energy Chem 2021;60:435-50.

15. Thackeray MM, Amine K. LiMn2O4 spinel and substituted cathodes. Nat Energy 2021;6:566-566.

16. Yu X. Releasing oxygen from the bulk. Nat Energy 2021;6:572-3.

17. He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;33:e2005937.

18. Liu J, Wang J, Ni Y, Zhang K, Cheng F, Chen J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater Today 2021;43:132-65.

19. Zheng J, Yan P, Zhang J, et al. Suppressed oxygen extraction and degradation of LiNixMnyCozO2 cathodes at high charge cut-off voltages. Nano Res 2017;10:4221-31.

20. Kong W, Zhang J, Wong D, et al. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew Chem Int Ed Engl 2021;60:27102-12.

21. Aishova A, Park G, Yoon CS, Sun Y. Cobalt-free high-capacity ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv Energy Mater 2020;10:1903179.

22. Takahashi I, Kiuchi H, Ohma A, Fukunaga T, Matsubara E. Cathode electrolyte interphase formation and electrolyte oxidation mechanism for Ni-rich cathode materials. J Phys Chem C 2020;124:9243-8.

23. Zhang J, Li Q, Wang Y, Zheng J, Yu X, Li H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater 2018;14:1-7.

24. Hou P, Yin J, Ding M, Huang J, Xu X. Surface/Interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives. Small 2017;13:1701802.

25. Su Y, Zhao J, Chen L, et al. Interfacial degradation and optimization of Li-rich cathode materials. Chin J Chem 2021;39:402-20.

26. Pham HQ, Hwang E, Kwon Y, Song S. Toward 5 V lithium-ion battery: exploring the limit of charge cut-off voltage of Li-rich layered oxide cathode and high-voltage interfacial processes. Adv Mater Interfaces 2017;4:1700483.

27. Li Q, Ning, Wong D, et al. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nat Commun 2022;13:1123.

28. Zhu Z, Wang H, Li Y, et al. A surface Se-substituted LiCo[O2-δ Seδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater 2020;32:e2005182.

29. Jayawardana C, Rodrigo N, Parimalam B, Lucht BL. Role of electrolyte oxidation and difluorophosphoric acid generation in crossover and capacity fade in lithium ion batteries. ACS Energy Lett 2021;6:3788-92.

30. Liu M, Vatamanu J, Chen X, Xing L, Xu K, Li W. Hydrolysis of LiPF6 -containing electrolyte at high voltage. ACS Energy Lett 2021;6:2096-102.

31. Su C, He M, Amine R, et al. Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes for lithium-ion batteries. Nano Energy 2021;83:105843.

32. Zhao J, Zhang X, Liang Y, et al. Interphase engineering by electrolyte additives for lithium-rich layered oxides: advances and perspectives. ACS Energy Lett 2021;6:2552-64.

33. Kim N, Moon J, Ryou M, et al. Amphiphilic bottlebrush polymeric binders for high-mass-loading cathodes in lithium-ion batteries. Adv Energy Mater 2022;12:2102109.

34. Zhang J, Zhang J, Ou X, Wang C, Peng C, Zhang B. Enhancing high-voltage performance of Ni-rich cathode by surface modification of self-assembled NASICON fast ionic conductor LiZr2(PO4)3. ACS Appl Mater Interfaces 2019;11:15507-16.

35. Li S, Zhang W, Wu Q, et al. Synergistic dual-additive electrolyte enables practical lithium-metal batteries. Angew Chem Int Ed Engl 2020;59:14935-41.

36. Guo W, Zhang C, Zhang Y, et al. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials. Adv Mater 2021;33:e2103173.

37. Wang X, Wang X, Lu Y. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind Eng Chem Res 2019;58:10119-39.

38. Lyu Y, Wu X, Wang K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater 2021;11:2000982.

39. Wang L, Ma J, Wang C, et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv Sci (Weinh) 2019;6:1900355.

40. Li J, Lin C, Weng M, et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat Nanotechnol 2021;16:599-605.

41. Cheng T, Ma Z, Qian R, et al. Achieving stable cycling of LiCoO2 at 4.6 V by multilayer surface modification. Adv Funct Mater 2021;31:2001974.

42. Zhang J, Tan X, Guo L, et al. Controllable formation of lithium carbonate surface phase during synthesis of nickel-rich LiNi0.9Mn0.1O2 in air and its protection role in electrochemical reaction. J Alloys Compd 2019;771:42-50.

43. Li W, Zhang X, Si J, Yang J, Sun X. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met 2021;40:1719-26.

44. Wang L, Wang J, Wang L, Zhang M, Wang R, Zhan C. A critical review on nickel-based cathodes in rechargeable batteries. Int J Miner Metall Mater 2022;29:925-41.

45. Cheng F, Zhang X, Qiu Y, et al. Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries. Nano Energy 2021;88:106301.

46. Huang Y, Dong Y, Li S, et al. Lithium manganese spinel cathodes for lithium-ion batteries. Adv Energy Mater 2021;11:2000997.

47. Zuo C, Hu Z, Qi R, et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative jahn-teller distortion. Adv Energy Mater 2020;10:2000363.

48. Liang G, Peterson VK, See KW, Guo Z, Pang WK. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J Mater Chem A 2020;8:15373-98.

49. Gou X, Hao Z, Hao Z, et al. In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries. Adv Funct Mater 2022;32:2112088.

50. Fan Y, Zhang W, Zhao Y, Guo Z, Cai Q. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: layered and disordered-rocksalt structure. Energy Storage Mater 2021;40:51-71.

51. Kim SY, Park CS, Hosseini S, Lampert J, Kim YJ, Nazar LF. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer. Adv Energy Mater 2021;11:2100552.

52. Li Z, Peng Z, Sun R, et al. Super Na+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co0.5Ni0.5Se2 @ NC nanosheets into cross-stacked architecture. Chin J Chem 2021;39:2599-606.

53. Lian J, Wu Y, Guo Y, et al. Design of hierarchical and mesoporous FeF3/rGO hybrids as cathodes for superior lithium-ion batteries. Chin Chem Lett 2021; doi: 10.1016/j.cclet.2021.12.014.

54. Sun R, Dong S, Xu F, et al. Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate {(NH4)2V6O16} for stable zinc ion storage. Dalton Trans 2022;51:7607-12.

55. Sun R, Qin Z, Li Z, Fan H, Lu S. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans 2020;49:14237-42.

56. Sun R, Qin Z, Liu X, et al. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries. ACS Sustainable Chem Eng 2021;9:11769-77.

57. Wang J, Du C, Xue Y, et al. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 2021;1:20210024.

58. Zhu H, Li Z, Xu F, et al. Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery. J Colloid Interface Sci 2022;611:718-25.

59. Cho M, Song SH, Hong S, et al. Critical role of Ti4+ in stabilizing high-voltage redox reactions in Li-rich layered material. Small 2021;17:e2100840.

60. Sun HH, Kim UH, Park JH, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat Commun 2021;12:6552.

61. Zhang J, Li Q, Ouyang C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy 2019;4:594-603.

62. Zhou A, Liu Q, Wang Y, et al. Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J Mater Chem A 2017;5:24361-70.

63. Hu D, Du F, Cao H, et al. An effective strategy to control thickness of Al2O3 coating layer on nickel-rich cathode materials. J Electroanal Chem 2021;880:114910.

64. Østli ER, Tesfamhret Y, Wenner S, et al. Limitations of ultrathin Al2O3 coatings on LNMO cathodes. ACS Omega 2021;6:30644-55.

65. Zou T, Qi W, Liu X, et al. Improvement of the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by Al2O3 surface coating. J Electro Chem 2020;859:113845.

66. Lee S, Park G, Sim S, Jin B, Kim H. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating. J Alloys Compd 2019;791:193-9.

67. Nisar U, Al-hail SAJA, Petla RK, et al. Understanding the origin of the ultrahigh rate performance of a SiO2 -Modified LiNi0.5Mn1.5O4 cathode for lithium-ion batteries. ACS Appl Energy Mater 2019;2:7263-71.

68. Zhai X, Zhang P, Huang H, et al. Surface grafting SiO2 on lithium-rich layered oxide cathode material for improving structural stability. J Electrochem Soc 2021;168:060528.

69. Zhou A, Lu Y, Wang Q, et al. Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J Power Sources 2017;346:24-30.

70. Zhao S, Zhu Y, Qian Y, et al. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater Lett 2020;265:127418.

71. Zhang C, Liu X, Su Q, Wu J, Huang T, Yu A. Enhancing Electrochemical Performance of LiMn2O4 cathode material at elevated temperature by uniform nanosized TiO2 coating. ACS Sustainable Chem Eng 2017;5:640-7.

72. Liu J, Wu Z, Yu M, et al. Building homogenous Li2 TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small 2022;18:e2106337.

73. Kong J, Ren C, Tai G, et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 2014;266:433-9.

74. Wang F, Hong R, Lu X, et al. Improvement of long-term cycling performance of high-nickel cathode materials by ZnO coating. Nanotechnol Rev 2021;10:210-20.

75. Nie K, Sun X, Wang J, et al. Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. J Power Sources 2020;470:228423.

76. Hudaya C, Park JH, Lee JK, Choi W. SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries. Solid State Ionics 2014;256:89-92.

77. Xie Z, Zhang Y, Yuan A, Xu J. Effects of lithium excess and SnO2 surface coating on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries. J Alloys Compd 2019;787:429-39.

78. Chen C, Geng T, Du C, et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 2016;331:91-9.

79. Hao Q, Xu C, Jia S, Zhao X. Improving the cycling stability of LiCoO2 at 4.5 V through surface modification by Fe2O3 coating. Electrochim Acta 2013;113:439-45.

80. Huang Y, Huang Y, Hu X. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim Acta 2017;231:294-9.

81. Liu K, Yang G, Dong Y, Shi T, Chen L. Enhanced cycling stability and rate performance of Li[Ni0.5Co0.2Mn0.3]O2 by CeO2 coating at high cut-off voltage. J Power Sources 2015;281:370-7.

82. Wu ZH, Shih JY, Li YJ, et al. MoO3 nanoparticle coatings on high-voltage 5 V LiNi0.5Mn1.5O4 cathode materials for improving lithium-ion battery performance. Nanomaterials (Basel) 2022;12:409.

83. Huang J, Fang X, Wu Y, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3. J Electro Chem 2018;823:359-67.

84. Zhu J, Cao G, Li Y, et al. Nd2O3 encapsulation-assisted surface passivation of Ni-rich LiNi0.8Co0.1Mn0.1O2 active material and its electrochemical performance. Electrochim Acta 2019;325:134889.

85. Jung SH, Kim DH, Brüner P, et al. Extremely conductive RuO2-coated LiNi0.5Mn1.5O4 for lithium-ion batteries. Electrochim Acta 2017;232:236-43.

86. Sattar T, Sim S, Jin B, Kim H. Improving the cycle stability and rate performance of LiNi0.91Co0.06Mn0.03O2 Ni-rich cathode material by La2O3 coating for Lithium-ion batteries. Curr Appl Phys 2022;36:176-82.

87. Liu X, Kou L, Shi T, Liu K, Chen L. Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2. J Power Sources 2014;267:874-80.

88. Yao L, Liang F, Jin J, Chowdari BV, Yang J, Wen Z. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem Eng J 2020;389:124403.

89. Shapira A, Tiurin O, Solomatin N, Auinat M, Meitav A, Ein-eli Y. Robust AlF3 atomic layer deposition protective coating on LiMn1.5 Ni0.5 O4 particles: an advanced Li-ion battery cathode material powder. ACS Appl Energy Mater 2018;1:6809-23.

90. Zhao B, Xie J, Zhuang H, et al. Improved low-temperature performance of surface modified lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium ion batteries. Solid State Ionics 2020;347:115245.

91. Dai S, Yan G, Wang L, et al. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. J Electro Chem 2019;847:113197.

92. Wei J, Ji Y, Liang D, Chen B, Jiang C, Li X. Anticorrosive nanosized LiF thin film coating for achieving long-cycling stability of LiCoO2 at high voltages. Ceram Int 2022;48:10288-98.

93. Tiurin O, Solomatin N, Auinat M, Ein-eli Y. Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. J Power Sources 2020;448:227373.

94. Zhao T, Li L, Chen R, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 2015;15:164-76.

95. Li Y, Zhang Q, Xu T, et al. LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Ceram Int 2018;44:4058-66.

96. Zhou A, Xu J, Dai X, et al. Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. J Power Sources 2016;322:10-6.

97. Lee S, Kim M, Jeong JH, et al. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: improved thermal stability and high-voltage performance. J Power Sources 2017;360:206-14.

98. Bian X, Fu Q, Bie X, et al. Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim Acta 2015;174:875-84.

99. Li W, Yang L, Li Y, et al. Ultra-thin AlPO4 layer coated LiNi0.7Co0.15Mn0.15O2 cathodes with enhanced high-voltage and high-temperature performance for lithium-ion half/full batteries. Front Chem 2020;8:597.

100. Ma X, Wang C, Han X, Sun J. Effect of AlPO4 coating on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J Alloy Compd 2008;453:352-5.

101. Wu Y, Ming H, Li M, et al. New organic complex for lithium layered oxide modification: ultrathin coating, high-voltage, and safety performances. ACS Energy Lett 2019;4:656-65.

102. Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 2015;7:3773-81.

103. Chen Z, Kim G, Bresser D, et al. MnPO4-coated Li(Ni0.4Co0.2Mn0.4)O2 for lithium(-ion) batteries with outstanding cycling stability and enhanced lithiation kinetics. Adv Energy Mater 2018;8:1801573.

104. Kim KC, Jegal J, Bak S, Roh KC, Kim K. Improved high-voltage performance of FePO4-coated LiCoO2 by microwave-assisted hydrothermal method. Electrochem Commun 2014;43:113-6.

105. Wang Z, Liu E, He C, Shi C, Li J, Zhao N. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 2013;236:25-32.

106. Lee D, Scrosati B, Sun Y. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C. J Power Sources 2011;196:7742-6.

107. Xu T, Li Y, Wang D, et al. Enhanced electrochemical performance of LiNi0.5 Mn1.5 O4 cathode material by YPO4 surface modification. ACS Sustainable Chem Eng 2018;6:5818-25.

108. Wang Y, Zhang Q, Xue Z, et al. An in situ formed surface coating layer enabling LiCoO 2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater 2020;10:2001413.

109. Yang Q, Huang J, Li Y, et al. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J Power Sources 2018;388:65-70.

110. Li Z, Li A, Zhang H, et al. Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating. Energy Storage Mater 2020;29:71-7.

111. Liu Y, Fan X, Huang X, et al. Electrochemical performance of Li1.2Ni0.2Mn0.6O2 coated with a facilely synthesized Li1.3Al0.3Ti1.7(PO4)3. J Power Sources 2018;403:27-37.

112. Jamil S, Ran Q, Yang L, et al. Improved high-voltage performance of LiNi0.87Co0.1Al0.03O2 by Li-conductor coating. Chem Eng J 2021;407:126442.

113. Deng JC, Xu YL, Li L, Feng TY, Li L. Microporous LiAlSiO4 with high ionic conductivity working as a coating material and water adsorbent for LiNi0.5Mn1.5O4 cathode. J Mater Chem A 2016;4:6561-8.

114. Yang S, Wei H, Tang L, et al. Fast Li-ion conductor Li1+yTi2-yAly(PO4)3 modified Li1.2[Mn0.54Ni0.13Co0.13]O2 as high performance cathode material for Li-ion battery. Ceram Int 2021;47:18397-404.

115. Deng Y, Zhao S, Xu Y, Nan C. Effect of temperature of Li2O-Al2O3-TiO2-P2O5 solid-state electrolyte coating process on the performance of LiNi0.5Mn1.5O4 cathode materials. J Power Sources 2015;296:261-7.

116. Su Y, Chen G, Chen L, et al. Roles of fast-ion conductor LiTaO3 modifying Ni-rich cathode material for Li-ion batteries. ChemSusChem 2021;14:1955-61.

117. Zhang J, Cao Y, Ou X, et al. Constituting the NASICON type solid electrolyte coated material forming anti-high voltage system to enhance the high cut-off voltage performance of LiNi0.6Co0.2Mn0.2O2 via charge attracts electrostatic assembly. J Power Sources 2019;436:226722.

118. Park J, Cho J, Lee E, Kim J, Lee S. Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries. J Power Sources 2013;244:442-9.

119. Kim JM, Park JH, Lee CK, Lee SY. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries. Sci Rep 2014;4:4602.

120. Wang H, Lin J, Zhang X, et al. Improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials induced by a facile polymer coating for lithium-ion batteries. ACS Appl Energy Mater 2021;4:6205-13.

121. Lin K, Yang S, Shi Z, Fan Q, Liu Z, Liu L. Knitting a sweater with UV-induced in situ polymerization of poly(pyrrole-co-citral nitrile) on Ni-rich layer oxide cathode materials for lithium ion batteries. J Power Sources 2022;520:230768.

122. Sun Q, Hu G, Peng Z, et al. Achieving a bifunctional conformal coating on nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 with half-cyclized polyacrylonitrile. Electrochim Acta 2021;386:138440.

123. Cao Y, Qi X, Hu K, et al. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 2018;10:18270-80.

124. Gan Q, Qin N, Zhu Y, et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl Mater Interfaces 2019;11:12594-604.

125. Gao X, Deng Y, Wexler D, et al. Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J Mater Chem A 2015;3:404-11.

126. Zhang J, Lu Q, Fang J, Wang J, Yang J, NuLi Y. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl Mater Interfaces 2014;6:17965-73.

127. Yang X, Wang C, Yan P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv Energy Mater 2022;2200197.

128. Hu G, Cao J, Peng Z, Cao Y, Du K. Enhanced high-voltage properties of LiCoO2 coated with Li[Li0.2Mn0.6Ni0.2]O2. Electrochim Acta 2014;149:49-55.

129. Liu Y, Huang X, Qiao Q, Wang Y, Ye S, Gao X. Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries. Electrochim Acta 2014;147:696-703.

130. Yang S, Wang P, Wei H, et al. Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 2019;63:103889.

131. Hu Q, He Y, Ren D, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6 V. Nano Energy 2022;96:107123.

132. Jerng SE, Chang B, Shin H, et al. Pyrazine-linked 2D covalent organic frameworks as coating material for high-nickel layered oxide cathodes in lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:10597-606.

133. Zheng X, Liu W, Qu Q, Shi Q, Zheng H, Huang Y. Effectively stabilizing 5 V spinel LiNi0.5Mn1.5O4 cathode in organic electrolyte by polyvinylidene fluoride coating. Appl Surf Sci 2018;455:349-56.

134. Yu F, Que L, Xu C, et al. Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries. Nano Energy 2019;59:527-36.

135. Gao M, Yan C, Shao Q, et al. A novel perovskite electron-ion conductive coating to simultaneously enhance cycling stability and rate capability of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. Small 2021;17:e2008132.

136. Pu W, Meng Y, Wang Y, et al. Investigation of the LiBH4 modification effect on cycling stability and high-rate capacity of LiCoO2 cathodes. ACS Appl Energy Mater 2021;4:6933-41.

137. Wang P, Meng Y, Wang Y, et al. Oxygen framework reconstruction by LiAlH4 treatment enabling stable cycling of high-voltage LiCoO2. Energy Storage Mater 2022;44:487-96.

138. Maiti S, Konar R, Sclar H, et al. Stabilizing high-voltage lithium-ion battery cathodes using functional coatings of 2D tungsten diselenide. ACS Energy Lett 2022;7:1383-91.

139. Charles-blin Y, Nemoto K, Zettsu N, Teshima K. Effects of a solid electrolyte coating on the discharge kinetics of a LiCoO2 electrode: mechanism and potential applications. J Mater Chem A 2020;8:20979-86.

140. Zhao R, Li L, Xu T, et al. One-step integrated surface modification to build a stable interface on high-voltage cathode for lithium-ion batteries. ACS Appl Mater Interfaces 2019;11:16233-42.

141. Hwang T, Lee JK, Mun J, Choi W. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. J Power Sources 2016;322:40-8.

142. Lai X, Hu G, Peng Z, et al. Surface structure decoration of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6(PO4)3 and polyaniline for lithium-ion batteries. J Power Sources 2019;431:144-52.

143. Tong B, Song Z, Wan H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 2021;3:1364-92.

144. Zhang SS. Design aspects of electrolytes for fast charge of Li-ion batteries. InfoMat 2021;3:125-30.

145. Sun Y, Huang J, Xiang H, Liang X, Feng Y, Yu Y. 2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode. J Mater Sci Techno 2020;55:198-202.

146. Ruan D, Chen M, Wen X, et al. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive. Nano Energy 2021;90:106535.

147. Zhang Z, Liu F, Huang Z, et al. Enhancing the electrochemical performance of a high-voltage LiCoO 2 cathode with a bifunctional electrolyte additive. ACS Appl Energy Mater 2021;4:12954-64.

148. Jiang S, Wu H, Yin J, et al. Benzoic anhydride as a bifunctional electrolyte additive for hydrogen fluoride capture and robust film construction over high-voltage Li-ion batteries. ChemSusChem 2021;14:2067-75.

149. Chen J, Xing L, Yang X, Liu X, Li T, Li W. Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive. Electrochim Acta 2018;290:568-76.

150. Deng B, Wang H, Ge W, et al. Investigating the influence of high temperatures on the cycling stability of a LiNi0.6 Co0.2Mn0.2O2 cathode using an innovative electrolyte additive. Electrochim Acta 2017;236:61-71.

151. Wang S, Chen S, Gao W, Liu L, Zhang S. A new additive 3-Isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage. J Power Sources 2019;423:90-7.

152. Yim T, Jang SH, Han Y. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. J Power Sources 2017;372:24-30.

153. Lin Y, Zhang H, Yue X, Yu L, Fan W. Triallyl phosphite as an electrolyte additive to improve performance at elevated temperature of LiNi0.6Co0.2Mn0.2O2/graphite cells. J Electro Chem 2019;832:408-16.

154. Qin Z, Hong S, Hong B, Duan B, Lai Y, Feng J. Triisopropyl borate as an electrolyte additive for improving the high voltage stability of LiNi0.6Co0.2Mn0.2O2 cathode. J Electro Chem 2019;854:113506.

155. Yang J, Liu X, Wang Y, et al. Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries. Adv Energy Mater 2021;11:2101956.

156. Kim K, Kim Y, Park S, et al. Dual-function ethyl 4,4,4-trifluorobutyrate additive for high-performance Ni-rich cathodes and stable graphite anodes. J Power Sources 2018;396:276-87.

157. Shi C, Shen C, Peng X, et al. A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive. Nano Energy 2019;65:104084.

158. Hong P, Xu M, Zheng X, et al. Effect of ethylene glycol bis (propionitrile) ether (EGBE) on the performance and interfacial chemistry of lithium-rich layered oxide cathode. J Power Sources 2016;329:216-24.

159. Lan J, Zheng Q, Zhou H, et al. Stabilizing a high-voltage lithium-rich layered oxide cathode with a novel electrolyte additive. ACS Appl Mater Interfaces 2019;11:28841-50.

160. Bolloju S, Chiou C, Vikramaditya T, Lee J. (Pentafluorophenyl)diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries. Electrochim Acta 2019;299:663-71.

161. Lim SH, Cho W, Kim Y, Yim T. Insight into the electrochemical behaviors of 5V-class high-voltage batteries composed of lithium-rich layered oxide with multifunctional additive. J Power Sources 2016;336:465-74.

162. Chen R, Liu F, Chen Y, et al. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J Power Sources 2016;306:70-7.

163. Han J, Hwang C, Kim SH, et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv Energy Mater 2020;10:2000563.

164. Yang X, Lin M, Zheng G, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv Funct Mater 2020;30:2004664.

165. Zhang X, Zou L, Cui Z, et al. Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries. Materials Today 2021;44:15-24.

166. Huang H, Li Z, Gu S, et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv Energy Mater 2021;11:2101864.

167. Isozumi H, Horiba T, Kubota K, et al. Application of modified styrene-butadiene-rubber-based latex binder to high-voltage operating LiCoO2 composite electrodes for lithium-ion batteries. J Power Sources 2020;468:228332.

168. Kuo J, Li C. Water-Based Process to the Preparation of Nickel-Rich Li(Ni0.8Co0.1Mn0.1)O2 Cathode. J Electrochem Soc 2020;167:100504.

169. Mo J, Zhang D, Sun M, et al. Polyethylene oxide as a multifunctional binder for high-performance ternary layered cathodes. Polymers (Basel) 2021;13:3992.

170. Pham HQ, Lee J, Jung HM, Song S. Non-flammable LiNi0.8Co0.1Mn0.1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries. Electrochim Acta 2019;317:711-21.

171. Dong T, Zhang H, Ma Y, et al. A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes. J Mater Chem A 2019;7:24594-601.

172. Ma Y, Wang C, Ma J, et al. Interfacial chemistry of γ-glutamic acid derived block polymer binder directing the interfacial compatibility of high voltage LiNi0.5Mn1.5O4 electrode. Sci China Chem 2021;64:92-100.

173. Zhong H, Lu J, He A, Sun M, He J, Zhang L. Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder: challenging application for 5 V LiNi0.5Mn1.5O4 cathode. J Mater Sci Techno 2017;33:763-7.

174. Rao L, Jiao X, Yu CY, et al. Multifunctional composite binder for thick high-voltage cathodes in lithium-ion batteries. ACS Appl Mater Interfaces 2022;14:861-72.

175. Ma Y, Chen K, Ma J, et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy Environ Sci 2019;12:273-80.

176. Pham HQ, Kim G, Jung HM, Song S. Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv Funct Mater 2018;28:1704690.

177. Zhang G, Qiu B, Xia Y, et al. Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. J Power Sources 2019;420:29-37.

178. Zhang S, Deng Y, Wu Q, et al. Sodium-alginate-based binders for lithium-rich cathode materials in lithium-ion batteries to suppress voltage and capacity fading. Chem Electro Chem 2018;5:1321-9.

179. Ding X, Luo D, Cui J, Xie H, Ren Q, Lin Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew Chem Int Ed Engl 2020;59:7778-82.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/