REFERENCES

1. Wu J, Gao M, Chai Y, et al. Towards a bright future: the versatile applications of organic solar cells. Mater Rep Energy 2021;1:100062.

2. Zhou K, Xian K, Qi Q, et al. Unraveling the correlations between mechanical properties, miscibility, and film microstructure in all-polymer photovoltaic cells. Adv Funct Mater 2022;32:2201781.

3. Wu Y, Kong J, Qin Y, et al. Realizing green solvent processable non-fullerene organic solar cells by modulating the side groups of conjugated polymers. Acta Phys Chim Sin 2019;35:1391-1398.

4. Zhang W, Huang J, Lv X, et al. Chlorinated phthalimide polymer donor as ultra-wide bandgap and deep HOMO guest for achieving highly eficient polymer solar cells. Chin Chem Lett 2022; doi: 10.1016/j.cclet.2022.04.034.

5. Wang H, Lu H, Chen YN, et al. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17. Adv Mater 2022;34:e2105483.

6. Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater 2022;21:656-63.

7. Wei Y, Chen Z, Lu G, et al. Binary organic solar cells breaking 19% via Manipulating the vertical component distribution. Adv Mater 2022;34:e2204718.

8. Sun R, Wu Y, Yang X, et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv Mater 2022;34:e2110147.

9. Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater 2021;33:e2102420.

10. Liu Y, Liu B, Ma C, et al. Recent progress in organic solar cells (part II device engineering). Sci China Chem 2022;65:1457-97.

11. Liu Y, Liu B, Ma C, et al. Recent progress in organic solar cells (part I material science). Sci China Chem 2022;65:224-68.

12. Yang M, Wei W, Zhou X, Wang Z, Duan C. Non-fused ring acceptors for organic solar cells. Energy Mater 2022;1:100008.

13. Ye L, Ke H, Liu Y. The renaissance of polythiophene organic solar cells. Trends Chem 2021;3:1074-87.

14. Mehmood U, Al-ahmed A, Hussein IA. Review on recent advances in polythiophene based photovoltaic devices. Renew Sust Energ Rev 2016;57:550-61.

15. Wadsworth A, Hamid Z, Bidwell M, et al. Progress in poly (3-hexylthiophene) organic solar cells and the influence of its molecular weight on device performance. Adv Energy Mater 2018;8:1801001.

16. Yang C, Zhang S, Hou J. Low-cost and efficient organic solar cells based on polythiophene-and poly(thiophene vinylene)-related donors. Aggregate 2021;3:e111.

17. Xu X, Wu H, Liang S, et al. Quantum efficiency and voltage losses in P3HT: non-fullerene solar cells. Acta Phys Chim Sin 2022;0:2201039-0.

18. Chatterjee S, Jinnai S, Ie Y. Nonfullerene acceptors for P3HT-based organic solar cells. J Mater Chem A 2021;9:18857-86.

19. Zhou D, You W, Xu H, et al. Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors. J Mater Chem A 2020;8:23096-122.

20. Holliday S, Ashraf RS, Wadsworth A, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun 2016;7:11585.

21. Xu X, Zhang G, Yu L, Li R, Peng Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv Mater 2019;31:e1906045.

22. Yang C, Zhang S, Ren J, et al. Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy Environ Sci 2020;13:2864-9.

23. Xian K, Liu Y, Liu J, et al. Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. J Mater Chem A 2022;10:3418-29.

24. Xian K, Geng Y, Ye L. The rise of polythiophene photovoltaics. Joule 2022;6:941-4.

25. Liu Y, Xian K, Zhang X, et al. A mixed-ligand strategy to modulate P3HT regioregularity for high-efficiency solar cells. Macromolecules 2022;55:3078-86.

26. Liang Z, Li M, Wang Q, et al. Optimization requirements of efficient polythiophene:nonfullerene organic solar cells. Joule 2020;4:1278-95.

27. Gao M, Liu Y, Xian K, et al. Thermally stable poly(3-hexylthiophene): nonfullerene solar cells with efficiency breaking 10%. Aggregate 2022:e190.

28. Xu Q, Chang C, Li W, et al. Non-fullerene polymer solar cells based on a new polythiophene derivative as donor. Acta Phys Chim Sin 2019;35:268-274.

29. Zhang M, Guo X, Ma W, Ade H, Hou J. A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv Mater 2014;26:5880-5.

30. Qin Y, Uddin MA, Chen Y, et al. Highly efficient fullerene-free polymer solar cells fabricated with polythiophene derivative. Adv Mater 2016;28:9416-22.

31. Zhang H, Li S, Xu B, Yao H, Yang B, Hou J. Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. J Mater Chem A 2016;4:18043-9.

32. Yao H, Qian D, Zhang H, et al. Critical role of molecular electrostatic potential on charge generation in organic solar cells: critical role of molecular electrostatic potential on charge generation in organic solar cells. Chin J Chem 2018;36:491-4.

33. Wang Q, Li M, Zhang X, et al. Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: the effect of chlorination on their properties. Macromolecules 2019;52:4464-74.

34. Wang Q, Li M, Peng Z, et al. Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells. Sci China Chem 2021;64:478-87.

35. Jia X, Chen Z, Duan C, et al. Polythiophene derivatives compatible with both fullerene and non-fullerene acceptors for polymer solar cells. J Mater Chem C 2019;7:314-23.

36. Jia X, Liu G, Chen S, et al. Backbone fluorination of polythiophenes improves device performance of non-fullerene polymer solar cells. ACS Appl Energy Mater 2019;2:7572-83.

37. Yuan X, Zhao Y, Zhang Y, et al. Achieving 16% efficiency for polythiophene organic solar cells with a cyano-substituted polythiophene. Adv Funct Mater 2022;32:2201142.

38. Liu W, Lu H, Zhang Y, et al. Enhancing the performance of organic solar cells by modification of cathode with a self-assembled monolayer of aromatic organophosphonic acid. Chin Chem Lett 2022; doi: 10.1016/j.cclet.2022.05.009.

39. Xue P, Zhang J, Xin J, et al. Effects of terminal groups in third components on performance of organic solar cells. Acta Phys Chim Sin 2019;35:275-283.

40. Xu W, Gao F. The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells. Mater Horiz 2018;5:206-21.

41. Xu X, Li Y, Peng Q. Ternary blend organic solar cells: understanding the morphology from recent progress. Adv Mater 2021;33:e2107476.

42. Lu L, Kelly MA, You W, Yu L. Status and prospects for ternary organic photovoltaics. Nat Photon 2015;9:491-500.

43. Wang Y, Zhuang C, Fang Y, Yu H, Wang B. Various roles of dye molecules in organic ternary blend solar cells. Dyes Pigment 2020;176:108231.

44. Wang J, Ye L. When electronically inert polymers meet conjugated polymers: emerging opportunities in organic photovoltaics. Chin J Polym Sci 2022;40:861-9.

45. Li H, Lu K, Wei Z. Polymer/small molecule/fullerene based ternary solar cells. Adv Energy Mater 2017;7:1602540.

46. Lu H, Xu X, Bo Z. Perspective of a new trend in organic photovoltaic: ternary blend polymer solar cells. Sci China Mater 2016;59:444-58.

47. Gao M, Wang W, Hou J, Ye L. Control of aggregated structure of photovoltaic polymers for high-efficiency solar cells. Aggregate 2021;2:e46.

48. Gao M, Liang Z, Geng Y, Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chem Commun 2020;56:12463-78.

49. Liu J, Xian K, Ye L, Zhou Z. Open-circuit voltage loss in lead chalcogenide quantum dot solar cells. Adv Mater 2021;33:e2008115.

50. Park E, Fu H, Choi M, Luan W, Kim Y. Effects of ligand-exchanged cadmium selenide nanoparticles on the performance of P3HT:PCBM:CdSe ternary system solar cells. Bull Korean Chem Soc 2013;34:2321-4.

51. Zhao S, Pi X, Mercier C, Yuan Z, Sun B, Yang D. Silicon-nanocrystal-incorporated ternary hybrid solar cells. Nano Energy 2016;26:305-12.

52. Fan W, Li H, Zhang H, et al. Study on the influence of embedded structure of carbon quantum dots of the organic solar cells with the territory active layer structure of P3HT: PC61BM: CQDs. J Mater Sci Mater Electron 2021;32:2293-301.

53. Yoon S, Heo SJ, Kim HJ. Hybrid polymer/inorganic nanoparticle blended ternary solar cells: Hybrid polymer/inorganic nanoparticle blended ternary solar cells. Phys Status Solidi RRL 2013;7:534-7.

54. Gebhardt RS, Du P, Peer A, et al. Utilizing wide band gap, high dielectric constant nanoparticles as additives in organic solar cells. J Phys Chem C 2015;119:23883-9.

55. Nam M, Kim S, Kang M, Kim S, Lee K. Efficiency enhancement in organic solar cells by configuring hybrid interfaces with narrow bandgap PbSSe nanocrystals. Org Electron 2012;13:1546-52.

56. Ongul F, Yuksel SA, Allahverdi C, Bozar S, Kazici M, Gunes S. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells. Spectrochim Acta A Mol Biomol Spectrosc 2018;194:50-6.

57. Sung SJ, Kim JH, Gihm SH, et al. Revisiting the role of graphene quantum dots in ternary organic solar cells: insights into the nanostructure reconstruction and effective förster resonance energy transfer. ACS Appl Energy Mater 2019;2:8826-35.

58. Yousaf S, Ikram M, Ali S. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells. J Colloid Interface Sci 2018;527:172-9.

59. Wu W, Wu H, Zhong M, Guo S. Dual role of graphene quantum dots in active layer of inverted bulk heterojunction organic photovoltaic devices. ACS Omega 2019;4:16159-65.

60. Lefrançois A, Luszczynska B, Pepin-Donat B, et al. Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells. Sci Rep 2015;5:7768.

61. Al-busaidi Z, Pearson C, Groves C, Petty MC. Enhanced lifetime of organic photovoltaic diodes utilizing a ternary blend including an insulating polymer. Sol Energy Mater Sol Cells 2017;160:101-6.

62. Kumano M, Ide M, Seiki N, Shoji Y, Fukushima T, Saeki A. A ternary blend of a polymer, fullerene, and insulating self-assembling triptycene molecules for organic photovolatics. J Mater Chem A 2016;4:18490-8.

63. Chen F, Chien S. Nanoscale functional interlayers formed through spontaneous vertical phase separation in polymer photovoltaic devices. J Mater Chem 2009;19:6865.

64. Wang H, Zhang W, Xu C, Bi X, Chen B, Yang S. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly. ACS Appl Mater Interfaces 2013;5:26-34.

65. Yao K, Chen L, Chen X, Chen Y. Self-organized hole transport layers based on polythiophene diblock copolymers for inverted organic solar cells with high efficiency. Chem Mater 2013;25:897-904.

66. Yu L, Li C, Li Q, et al. Performance improvement of conventional and inverted polymer solar cells with hydrophobic fluoropolymer as nonvolatile processing additive. Org Electron 2015;23:99-104.

67. Yamakawa S, Tajima K, Hashimoto K. Buffer layer formation in organic photovoltaic cells by self-organization of poly(dimethylsiloxane)s. Org Electron 2009;10:511-4.

68. Ferenczi TA, Müller C, Bradley DD, Smith P, Nelson J, Stingelin N. Organic semiconductor: insulator polymer ternary blends for photovoltaics. Adv Mater 2011;23:4093-7.

69. Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Versatile methods for improving the mechanical properties of fullerene and non-fullerene bulk heterojunction layers to enable stretchable organic solar cells. J Mater Chem C 2022;10:3375-86.

70. Zhang K, Bi P, Wen Z, et al. Unveiling the important role of non-fullerene acceptors crystallinity on optimizing nanomorphology and charge transfer in ternary organic solar cells. Org Electron 2018;62:643-52.

71. Cheng P, Shi Q, Zhan X. Ternary blend organic solar cells based on P3HT/TT-TTPA/PC 61 BM. Acta Chim Sinica 2015;73:252.

72. Bi PQ, Wu B, Zheng F, et al. An obvious improvement in the performance of ternary organic solar cells with “Guest” donor present at the “Host” donor/acceptor interface. ACS Appl Mater Interfaces 2016;8:23212-21.

73. Galli D, Gasparini N, Forster M, et al. Suppressing the surface recombination and tuning the open-circuit voltage of polymer/fullerene solar cells by implementing an aggregative ternary compound. ACS Appl Mater Interfaces 2018;10:28803-11.

74. Mohapatra AA, Kim V, Puttaraju B, et al. Förster resonance energy transfer drives higher efficiency in ternary blend organic solar cells. ACS Appl Energy Mater 2018;1:4874-82.

75. Wang Y, Wang T, Chen J, et al. Quadrupolar D-A-D diketopyrrolopyrrole-based small molecule for ternary blend polymer solar cells. Dyes Pigment 2018;158:213-8.

76. Matsumoto K, Yamashita K, Sakoda Y, et al. Organic thin-film solar cells using benzotrithiophene derivatives bearing acceptor units as non-fullerene acceptors. Eur J Org Chem 2021;2021:4620-9.

77. Lim E. The effects of molecular packing behavior of small-molecule acceptors in ternary organic solar cells. Appl Sci 2021;11:755.

78. Fu P, Yang D, Zhang F, Yu W, Zhang J, Li C. Efficiency enhancement of P3HT:PCBM polymer solar cells using oligomers DH4T as the third component. Sci China Chem 2015;58:1169-75.

79. Honda S, Nogami T, Ohkita H, Benten H, Ito S. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Appl Mater Interfaces 2009;1:804-10.

80. Honda S, Ohkita H, Benten H, Ito S. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem Commun 2010;46:6596-8.

81. Min J, Ameri T, Gresser R, et al. Two similar near-infrared (IR) absorbing benzannulated aza-BODIPY dyes as near-IR sensitizers for ternary solar cells. ACS Appl Mater Interfaces 2013;5:5609-16.

82. Derouiche H, Mohamed AB. Thermal annealing effect on poly(3-hexylthiophene): fullerene:copper-phthalocyanine ternary photoactive layer. Sci World J 2013;2013:914981.

83. Xu H, Ohkita H, Hirata T, Benten H, Ito S. Near-IR dye sensitization of polymer blend solar cells. Polymer 2014;55:2856-60.

84. Xu H, Ohkita H, Tamai Y, Benten H, Ito S. Interface engineering for ternary blend polymer solar cells with a heterostructured near-IR dye. Adv Mater 2015;27:5868-74.

85. Ahmad Z, Touati F, Shakoor RA, Al-thani NJ. Study of a ternary blend system for bulk heterojunction thin film solar cells. Chinese Phys B 2016;25:080701.

86. Keawsongsaeng W, Gasiorowski J, Denk P, et al. Systematic investigation of porphyrin-thiophene conjugates for ternary bulk heterojunction solar cells. Adv Energy Mater 2016;6:1600957.

87. Grant TM, Gorisse T, Dautel O, Wantz G, Lessard BH. Multifunctional ternary additive in bulk heterojunction OPV: increased device performance and stability. J Mater Chem A 2017;5:1581-7.

88. Kadem B, Kaya EN, Hassan A, Durmuş M, Basova T. Composite materials of P3HT:PCBM with pyrene substituted zinc(II) phthalocyanines: characterisation and application in organic solar cells. Solar Energy 2019;189:1-7.

89. Grant TM, Rice NA, Muccioli L, Castet F, Lessard BH. Solution-processable n-type tin phthalocyanines in organic thin film transistors and as ternary additives in organic photovoltaics. ACS Appl Electron Mater 2019;1:494-504.

90. Wanwong S, Sangkhun W, Kumnorkaew P, Wootthikanokkhan J. Improved performance of ternary solar cells by using BODIPY triads. Materials 2020;13:2723.

91. Akel S, Sharif MA, Al-esseili R, et al. Photovoltaic cells based on ternary P3HT:PCBM: Ruthenium(II) complex bearing 8-(diphenylphosphino)quinoline active layer. Colloids Surf A Physicochem Eng Asp 2021;622:126685.

92. Ke L, Min J, Adam M, et al. A series of pyrene-substituted silicon phthalocyanines as near-ir sensitizers in organic ternary solar cells. Adv Energy Mater 2016;6:1502355.

93. Cheng Y, Hsieh C, Li P, Hsu C. Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv Funct Mater 2011;21:1723-32.

94. Lai Y, Higashihara T, Hsu J, Ueda M, Chen W. Enhancement of power conversion efficiency and long-term stability of P3HT/PCBM solar cells using C60 derivatives with thiophene units as surfactants. Sol Energy Mater Sol Cells 2012;97:164-70.

95. Khlyabich PP, Burkhart B, Thompson BC. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J Am Chem Soc 2011;133:14534-7.

96. Koppe M, Egelhaaf H, Dennler G, et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv Funct Mater 2010;20:338-46.

97. Li N, Machui F, Waller D, Koppe M, Brabec CJ. Determination of phase diagrams of binary and ternary organic semiconductor blends for organic photovoltaic devices. Sol Energy Mater Sol Cells 2011;95:3465-71.

98. Machui F, Rathgeber S, Li N, Ameri T, Brabec CJ. Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices. J Mater Chem 2012;22:15570.

99. Zhang L, Zhou W, Shi J, et al. Poly(3-butylthiophene) nanowires inducing crystallization of poly(3-hexylthiophene) for enhanced photovoltaic performance. J Mater Chem C 2015;3:809-19.

100. Baran D, Ashraf RS, Hanifi DA, et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater 2017;16:363-9.

101. Liang Q, Jiao X, Yan Y, et al. Separating crystallization process of P3HT and O-IDTBR to construct highly crystalline interpenetrating network with optimized vertical phase separation. Adv Funct Mater 2019;29:1807591.

102. Liang Q, Hu Z, Yao J, et al. Blending donors with different molecular weights: an efficient strategy to resolve the conflict between coherence length and intermixed phase in polymer/nonfullerene solar cells. Small 2022;18:e2103804.

103. Yuan X, Zhao Y, Xie D, et al. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule 2022;6:647-61.

104. Jeong D, Kim G, Lee D, et al. Sequentially fluorinated polythiophene donors for high-performance organic solar cells with 16.4% efficiency. Adv Energy Mater 2022;12:2201603.

105. Lin R, Wright M, Chan KH, et al. Performance improvement of low bandgap polymer bulk heterojunction solar cells by incorporating P3HT. Org Electron 2014;15:2837-46.

106. Goh T, Huang J, Bartolome B, et al. Panchromatic polymer-polymer ternary solar cells enhanced by Förster resonance energy transfer and solvent vapor annealing. J Mater Chem A 2015;3:18611-21.

107. Sivakumar G, Pratyusha T, Shen W, Gupta D. Performance of donor-acceptor copolymer materials PCPDTBT and PCDTBT with poly hexyl thiophene polymer in a ternary blend. Mater Today 2017;4:5060-6.

108. Yao G, Ge Y, Xiao X, et al. Preaggregation in solution producing multiple crystal forms of Y6 corresponding to a variation of miscibility in pm6-based ternary solar cells. ACS Appl Energy Mater 2022;5:1193-204.

109. Yi N, Ai Q, Zhou W, et al. Miscibility matching and bimolecular crystallization affording high-performance ternary nonfullerene solar cells. Chem Mater 2019;31:10211-24.

110. Ye L, Gao M, Hou J. Advances and prospective in thermally stable nonfullerene polymer solar cells. Sci China Chem 2021;64:1875-87.

111. Peng Z, Xian K, Cui Y, et al. Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells. Adv Mater 2021;33:e2106732.

112. Liu Y, Xian K, Gui R, et al. Simple polythiophene solar cells approaching 10% efficiency via carbon chain length modulation of poly(3-alkylthiophene). Macromolecules 2022;55:133-45.

113. Yang X, Gao M, Bi Z, et al. Unraveling the photovoltaic, mechanical, and microstructural properties and their correlations in simple poly(3-pentylthiophene) solar cells. Macromol Rapid Commun 2022:e2200229.

114. Chen F, Zhang Y, Wang Q, et al. High Tg polymer insulator yields organic photovoltaic blends with superior thermal stability at 150 °C. Chin J Chem 2021;39:2570-8.

115. Li Y, Zhang Y, Wu B, et al. High-efficiency P3HT-based all-polymer solar cells with a thermodynamically miscible polymer acceptor. Solar RRL 2022;6:2200073.

116. Luo Z, Liu T, Ma R, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15. Adv Mater 2020;32:e2005942.

117. Li B, Zhang X, Wu Z, et al. Over 16% efficiency all-polymer solar cells by sequential deposition. Sci China Chem 2022;65:1157-63.

118. Zhou K, Xian K, Ye L. Morphology control in high-efficiency all-polymer solar cells. InfoMat 2022:4.

119. Liu J, Liu Y, Wang J, et al. Brominated polythiophene reduces the efficiency-stability-cost gap of organic and quantum dot hybrid solar cells. Adv Energy Mater 2022;12:2201975.

120. Liu J, Qiao J, Zhou K, et al. An aggregation-suppressed polymer blending strategy enables high-performance organic and quantum dot hybrid solar cells. Small 2022;18:e2201387.

121. Kim H, Shin M, Kim Y. Distinct annealing temperature in polymer:fullerene:polymer ternary blend solar cells. J Phys Chem C 2009;113:1620-23.

122. Xu ZX, Roy VA, Low KH, Che CM. Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper(II) phthalocyanine:P3HT:PCBM composite. Chem Commun 2011;47:9654-6.

123. Khlyabich PP, Burkhart B, Thompson BC. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J Am Chem Soc 2012;134:9074-7.

124. Wang J, Liu J, Zhou K, et al. Processing poly(3-hexylthiophene) interlayer with non-halogenated solvents for high-performance and low-cost quantum dot solar cells. Solar RRL 2022:e2200779.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/