REFERENCES

1. Takada K. Progress and prospective of solid-state lithium batteries. Acta Materialia 2013;61:759-70.

2. Song MK, Cairns EJ, Zhang Y. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 2013;5:2186-204.

3. Lin Z, Liang C. Lithium-sulfur batteries: from liquid to solid cells. J Mater Chem A 2015;3:936-58.

4. Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 2016:1.

5. Wang Y, Sahadeo E, Rubloff G, Lin C, Lee SB. High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sci 2019;54:3671-93.

6. Yan M, Wang W, Yin Y, Wan L, Guo Y. Interfacial design for lithium-sulfur batteries: from liquid to solid. Energy Chem 2019;1:100002.

7. Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater 2019;18:1105-11.

8. Zhang W, Zhang Y, Peng L, et al. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy 2020;76:105083.

9. Nie K, Hong Y, Qiu J, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives. Front Chem 2018;6:616.

10. Lou S, Zhang F, Fu C, et al. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and Beyond. Adv Mater 2021;33:e2000721.

11. Sun Y, Huang J, Zhao C, Zhang Q. A review of solid electrolytes for safe lithium-sulfur batteries. Sci China Chem 2017;60:1508-26.

12. Judez X, Zhang H, Li CM et al. Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J Electrochem Soc 2018;165:A6008-16.

13. Tian Y, Shi T, Richards WD, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ Sci 2017;10:1150-66.

14. Gauthier M, Carney TJ, Grimaud A, et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J Phys Chem Lett 2015;6:4653-72.

15. Luntz AC, Voss J, Reuter K. Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 2015;6:4599-604.

16. Sang L, Bassett KL, Castro FC, et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries. Chem Mater 2018;30:8747-56.

17. Xiao Y, Wang Y, Bo S, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater 2020;5:105-26.

18. Zhang X, Cheng X, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 2018;5:1701097.

19. Umeshbabu E, Zheng B, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-Ion conductive solid electrolytes. Electrochem Energ Rev 2019;2:199-230.

20. Zhang C, Feng Y, Han Z, Gao S, Wang M, Wang P. Electrochemical and structural analysis in all-solid-state lithium batteries by analytical electron microscopy: progress and perspectives. Adv Mater 2020;32:e1903747.

21. Yue J, Yan M, Yin Y, Guo Y. Progress of the interface design in all-solid-state Li-S batteries. Adv Funct Mater 2018;28:1707533.

22. Wu Z, Xie Z, Yoshida A, et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review. Renew Sust Energy Rev 2019;109:367-85.

23. Xu L, Tang S, Cheng Y, et al. Interfaces in solid-state lithium batteries. Joule 2018;2:1991-2015.

24. Hu Y-, Raistrick ID, Huggins RA. Ionic conductivity of Lithium orthosilicate -Lithium phosphate solid solutions. J Electrochem Soc 1977;124:1240-2.

25. Shannon R, Taylor B, English A, Berzins T. New Li solid electrolytes. Electrochim Acta 1977;22:783-96.

26. Hong H. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater Res Bulletin 1978;13:117-24.

27. Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 2016:1.

28. Ribes M, Barrau B, Souquet J. Sulfide glasses: glass forming region, structure and ionic conduction of glasses in Na2SXS2 (X Si;Ge), Na2SP2S5 and Li2S GeS2 systems. J Non-Crystall Solids 1980;38-39:271-6.

29. Rao M, Geng X, Li X, Hu S, Li W. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte. J Power Sources 2012;212:179-85.

30. Wang L, Wang YG, Xia YY. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci 2015;8:1551-8.

31. Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-geramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim Acta 2014;146:395-402.

32. Duan J, Wu W, Nolan AM, et al. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater 2019;31:e1807243.

33. Wen J, Huang Y, Duan J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano 2019;13:14549-56.

34. Ohara K, Mitsui A, Mori M, et al. Structural and electronic features of binary Li2S-P2S5 glasses. Sci Rep 2016;6:21302.

35. Gao Z, Sun H, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 2018;30:e1705702.

36. Zheng B, Zhu J, Wang H, et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 2018;10:25473-82.

37. Kraft MA, Culver SP, Calderon M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 2017;139:10909-18.

38. Das S, Ngene P, Norby P, Vegge T, de Jongh PE, Blanchard D. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte. J Electrochem Soc 2016;163:A2029-34.

39. Fan Z, Ding B, Zhang T, et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition. Small 2019;15:e1903952.

40. Qu H, Zhang J, Du A, et al. Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. Adv Sci (Weinh) 2018;5:1700503.

41. Tatsumisago M. Glassy materials based on Li2S for all-solid-state lithium secondary batteries. Solid State Ionics 2004;175:13-8.

42. Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes. Electrochim Acta 2004;50:893-7.

43. Chen M, Prasada Rao R, Adams S. The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In-Li batteries. Solid State Ionics 2014;268:300-4.

44. Li X, Liang J, Luo J, et al. High-performance Li-SeSx all-solid-state lithium batteries. Adv Mater 2019;31:e1808100.

45. Zhang Q, Huang N, Huang Z, Cai L, Wu J, Yao X. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. J Energy Chem 2020;40:151-5.

46. Tatsumisago M, Nagao M, Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Cer Soc 2013;1:17-25.

47. Wang D, Wu Y, Zheng X, Tang S, Gong Z, Yang Y. Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. J Power Sourc 2020;479:228792.

48. Wang Q, Chen Y, Jin J, Wen Z. A new high-capacity cathode for all-solid-state lithium sulfur battery. Solid State Ionics 2020;357:115500.

49. Ando T, Sato Y, Matsuyama T, Sakuda A, Tatsumisago M, Hayashi A. High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries. J Ceram Soc Japan 2020;128:233-7.

50. Phuc NHH, Takaki M, Muto H, Reiko M, Kazuhiro H, Matsuda A. Sulfur-carbon nano fiber composite solid electrolyte for all-solid-state Li-S batteries. ACS Appl Energy Mater 2020;3:1569-73.

51. Shi J, Liu G, Weng W, et al. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl Mater Interfaces 2020;12:14079-86.

52. Fujii Y, Kobayashi M, Miura A, et al. Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. J Power Sources 2020;449:227576.

53. Ryou M, Lee YM, Lee Y, Winter M, Bieker P. Mechanical surface modification of lithium metal: towards improved li metal anode performance by directed Li plating. Adv Funct Mater 2015;25:834-41.

54. Kozen AC, Lin CF, Pearse AJ, et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015;9:5884-92.

55. Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem Mater 2015;27:6457-62.

56. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 2015;6:8058.

57. Kwon O, Hirayama M, Suzuki K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2-δS12. J Mater Chem A 2015;3:438-46.

58. Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA 2016;113:2862-7.

59. Cao Y, Meng X, Elam JW. Atomic layer deposition of Li XAl YS Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes. ChemElectroChem 2016;3:858-63.

60. Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nano Technol 2016;11:626-32.

61. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 2016;7:10992.

62. Sun Y, Zheng G, Seh Z, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016;1:287-97.

63. Zhang R, Cheng XB, Zhao CZ, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater 2016;28:2155-62.

64. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 2016;138:9385-8.

65. Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale Nucleation and growth of electrodeposited lithium metal. Nano Lett 2017;17:1132-9.

66. Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater 2017;29:1702714.

67. Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater 2017;29:1700542.

68. Yu B, Tao T, Mateti S, Lu S, Chen Y. Nanoflake arrays of lithiophilic metal oxides for the ultra - stable anodes of lithium - metal batteries. Adv Funct Mater 2018;28:1803023.

69. Sun Z, Jin S, Jin H, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv Mater 2018;30:e1800884.

70. Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv Energy Mater 2018;8:1800914.

71. Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018;2:764-77.

72. Zhou Y, Han Y, Zhang H, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy Stor Mater 2018;14:222-9.

73. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv Mater 2018;30:e1801328.

74. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 2019;9:1804004.

75. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy 2019;4:365-73.

76. Xia Y, Liang Y, Xie D, et al. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 2019;358:1047-53.

77. Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem Soc Rev 2020;49:2140-95.

78. Liu Y, Xu B, Zhang W, Li L, Lin Y, Nan C. Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small 2020;16:e1902813.

79. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017;33:363-86.

80. Chung H, Kang B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem Mater 2017;29:8611-9.

81. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 2015;278:98-105.

82. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater 2016;28:266-73.

83. Eom M, Son S, Park C, Noh S, Nichols WT, Shin D. High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite. Electrochim Acta 2017;230:279-84.

84. Yao X, Huang N, Han F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv Energy Mater 2017;7:1602923.

85. Sakuda A, Sato Y, Hayashi A, Tatsumisago M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries. Energy Technol 2019;7:1900077.

86. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.

87. Liu ZC, Fu WJ, Payzant EA, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 2013;135:975-8.

88. Goodenough J, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.

89. Whiteley JM, Woo JH, Hu E, Nam K, Lee S. Empowering the lithium metal battery through a silicon-based superionic conductor. J Electrochem Soc 2014;161:A1812-7.

90. Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66.

91. Sicolo S, Fingerle M, Hausbrand R, Albe K. Interfacial instability of amorphous lipon against lithium: a combined density functional theory and spectroscopic study. J Power Sources 2017;354:124-33.

92. Lei D, Shi K, Ye H, et al. Progress and perspective of solid-state lithium-sulfur batteries. Adv Funct Mater 2018;28:1707570.

93. Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater 2017;29:7961-8.

94. Scheers J, Fantini S, Johansson P. A review of electrolytes for lithium-sulphur batteries. J Power Sources 2014;255:204-18.

95. Jung YS, Oh DY, Nam YJ, Park KH. Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr J Chem 2015;55:472-85.

96. Cheng X, Zhao C, Yao Y, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019;5:74-96.

97. Pan H, Cheng Z, He P, Zhou H. A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry. Energy Fuels 2020;34:11942-61.

98. Sumita M, Tanaka Y, Ikeda M, Ohno T. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J Phys Chem C 2016;120:13332-9.

99. Xu R, Wu Z, Zhang S, et al. Construction of all-solid-state batteries based on a sulfur-graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte. Chemistry 2017;23:13950-6.

100. Liu Y, He P, Zhou H. Rechargeable solid-state Li-Air and Li-S batteries: materials, construction, and challenges. Adv Energy Mater 2018;8:1701602.

101. Riphaus N, Stiaszny B, Beyer H, Indris S, Gasteiger HA, Sedlmaier SJ. Editors’ choice - understanding chemical stability issues between different solid electrolytes in all-solid-state batteries. J Electrochem Soc 2019;166:A975-83.

102. Marceau H, Kim C, Paolella A, et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. J Power Sources 2016;319:247-54.

103. Chung S, Manthiram A. A Li2S-TiS2-electrolyte composite for stable Li2S-based lithium-sulfur batteries. Adv Energy Mater 2019;9:1901397.

104. Xiang Y, Li X, Cheng Y, Sun X, Yang Y. Advanced characterization techniques for solid state lithium battery research. Materials Today 2020;36:139-57.

105. Xu C, Sun B, Gustafsson T, Edström K, Brandell D, Hahlin M. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J Mater Chem A 2014;2:7256-64.

106. Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 2016;18:3796-803.

107. Li Y, Xu B, Xu H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed 2017;56:753-6.

108. Kim J. Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries. Mater Lett 2017;187:40-3.

109. Hartmann P, Leichtweiss T, Busche MR, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on Solid electrolytes. J Phys Chem C 2013;117:21064-74.

110. Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 2016;286:24-33.

111. Wang C, Gong Y, Liu B, et al. Conformal, nanoscale ZnO Surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett 2017;17:565-71.

112. Xu B, Li W, Duan H, et al. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J Power Sources 2017;354:68-73.

113. Sharafi A, Haslam CG, Kerns RD, Wolfenstine J, Sakamoto J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J Mater Chem A 2017;5:21491-504.

114. Xia W, Xu B, Duan H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. J Am Ceram Soc 2017;100:2832-9.

115. Nagao M, Hayashi A, Tatsumisago M, et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. J Power Sources 2015;274:471-6.

116. Xu R, Xia X, Li S, Zhang S, Wang X, Tu J. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J Mater Chem A 2017;5:6310-7.

117. Sheng O, Jin C, Luo J, et al. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries. J Mater Chem A 2017;5:12934-42.

118. Zhu P, Yan C, Zhu J, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Stor Mater 2019;17:220-5.

119. Shin M, Gewirth AA. Incorporating solvate and solid electrolytes for all-solid-state Li2S batteries with high capacity and long cycle life. Adv Energy Mater 2019;9:1900938.

120. Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electr Comm 2003;5:701-5.

121. Zhu X, Wen Z, Gu Z, Lin Z. Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J Power Sources 2005;139:269-73.

122. Jeong S, Lim Y, Choi Y, et al. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J Power Sources 2007;174:745-50.

123. Kobayashi T, Imade Y, Shishihara D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J Power Sources 2008;182:621-5.

124. Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sources 2008;183:422-6.

125. Hayashi A, Ohtsubo R, Nagao M, Tatsumisago M. Characterization of Li2S-P2S5-Cu composite electrode for all-solid-state lithium secondary batteries. J Mater Sci 2010;45:377-81.

126. Nagao M, Hayashi A, Tatsumisago M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochim Acta 2011;56:6055-9.

127. Nagao M, Hayashi A, Tatsumisago M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electr Comm 2012;22:177-80.

128. Agostini M, Aihara Y, Yamada T, Scrosati B, Hassoun J. A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte. Solid State Ionics 2013;244:48-51.

129. Nagao M, Imade Y, Narisawa H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 2013;222:237-42.

130. Kinoshita S, Okuda K, Machida N, Shigematsu T. Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium-sulfur battery. J Power Sources 2014;269:727-34.

131. Nagata H, Chikusa Y. Transformation of P2S5 into a solid electrolyte with ionic conductivity at the positive composite electrode of all-solid-state lithium-sulfur batteries. Energy Technol 2014;2:753-6.

132. Chen M, Adams S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J Solid State Electrochem 2015;19:697-702.

133. Yu C, van Eijck L, Ganapathy S, Wagemaker M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta 2016;215:93-9.

134. Choi HU, Jin JS, Park J, Lim H. Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode. J Alloys Comp 2017;723:787-94.

135. Zhang Y, Chen K, Shen Y, Lin Y, Nan C. Synergistic effect of processing and composition x on conductivity of xLi2S-(100-x)P2S5 electrolytes. Solid State Ionics 2017;305:1-6.

136. Ulissi U, Ito S, Hosseini SM, Varzi A, Aihara Y, Passerini S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv Energy Mater 2018;8:1801462.

137. Zhang Y, Liu T, Zhang Q, et al. High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. J Mater Chem A 2018;6:23345-56.

138. Gracia I, Ben Youcef H, Judez X, et al. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries. J Power Sources 2018;390:148-52.

139. Yu C, Hageman J, Ganapathy S, et al. Tailoring Li6PS5 Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries. J Mater Chem A 2019;7:10412-21.

140. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C. Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew Chem Int Ed 2013;52:7460-3.

141. Lin Z, Liu ZC, Dudney NJ, Liang CD. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013;7:2829-33.

142. Unemoto A, Yasaku S, Nogami G, et al. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl Phys Lett 2014;105:083901.

143. Han F, Yue J, Fan X, et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett 2016;16:4521-7.

144. Tao X, Liu Y, Liu W, et al. Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 2017;17:2967-72.

145. Zhang C, Lin Y, Zhu Y, Zhang Z, Liu J. Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries. RSC Adv 2017;7:19231-6.

146. Suzuki K, Kato D, Hara K, et al. Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium-sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim Acta 2017;258:110-5.

147. Suzuki K, Tateishi M, Nagao M, et al. Synthesis, structure, and electrochemical properties of a sulfur-carbon replica composite electrode for all-solid-state li-sulfur batteries. J Electrochem Soc 2017;164:A6178-83.

148. Oh DY, Kim DH, Jung SH, Han J, Choi N, Jung YS. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J Mater Chem A 2017;5:20771-9.

149. Trevey JE, Jung YS, Lee S. High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries. Electrochim Acta 2011;56:4243-7.

150. Hao Y, Wang S, Xu F, et al. A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects. ACS Appl Mater Interfaces 2017;9:33735-9.

151. Nagao M, Imade Y, Narisawa H, et al. Reaction mechanism of all-solid-state lithium-sulfur battery with two-dimensional mesoporous carbon electrodes. J Power Sources 2013;243:60-4.

152. Zhu Y, Li J, Liu J. A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. J Power Sources 2017;351:17-25.

153. Zhang Q, Wan H, Liu G, Ding Z, Mwizerwa JP, Yao X. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 2019;57:771-82.

154. Nagata H, Chikusa Y. An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions. J Power Sources 2016;329:268-72.

155. Hou L, Yuan H, Zhao C, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries. Energy Stor Mater 2020;25:436-42.

156. Mo Y, Ong SP, Ceder G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater 2012;24:15-7.

157. Sudo R, Nakata Y, Ishiguro K, et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 2014;262:151-4.

158. Fu KK, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 2017;3:e1601659.

159. Sakuma M, Suzuki K, Hirayama M, Kanno R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016;285:101-5.

160. Yang C, Xie H, Ping W, et al. An Electron/Ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater 2019;31:e1804815.

161. Kato A, Hayashi A, Tatsumisago M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J Power Sources 2016;309:27-32.

162. Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun 2019;10:900.

163. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-9.

164. Cheng Q, Li A, Li N, et al. Stabilizing solid electrolyte-anode interface in li-metal batteries by boron nitride-based nanocomposite coating. Joule 2019;3:1510-22.

165. Luo W, Gong Y, Zhu Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 2017;29:1606042.

166. Luo W, Gong Y, Zhu Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 2016;138:12258-62.

167. Shao Y, Wang H, Gong Z, et al. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state li batteries. ACS Energy Lett 2018;3:1212-8.

168. Sun B, Jin Y, Lang J, Liu K, Fang M, Wu H. A painted layer for high-rate and high-capacity solid-state lithium-metal batteries. Chem Commun 2019;55:6704-7.

169. Zhang Z, Chen S, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl Mater Interfaces 2018;10:2556-65.

170. Kızılaslan A, Akbulut H. Assembling all-solid-state lithium-sulfur batteries with Li3N-protected anodes. Chempluschem 2019;84:183-9.

171. Li S, Ruan J, Jiang R, et al. Inorganic all-solid-state lithium-sulfur batteries enhanced by facile thermal formation. Energy Stor Mater 2022;48:283-9.

172. Zhong L, Wang S, Xiao M, et al. Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S battery. Energy Stor Mater 2021;41:563-70.

173. Zhang Z, Zhao Y, Chen S, et al. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J Mater Chem A 2017;5:16984-93.

174. Yang H, Zhang Y, Tennenbaum MJ, et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries. ACS Appl Mater Interfaces 2019;11:27906-12.

175. Yu Q, Han D, Lu Q, et al. Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries. ACS Appl Mater Interfaces 2019;11:9911-8.

176. Zhou F, Li Z, Lu YY, et al. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries. Nat Commun 2019;10:2482.

177. Yuan H, Nan H, Zhao C, et al. Cover feature: slurry-coated sulfur/sulfide cathode with li metal anode for all-solid-state lithium-sulfur pouch cells. Batteries Supercaps 2020;3:568-568.

178. Jafta CJ, Prévost S, He L, et al. Quantifying the chemical, electrochemical heterogeneity and spatial distribution of (poly) sulfide species using operando SANS. Energy Stor Mate 2021;40:219-28.

179. Zhu Z, Lu LL, Yin Y, Shao J, Shen B, Yao HB. High rate and stable solid-state lithium metal batteries enabled by electronic and ionic mixed conducting network interlayers. ACS Appl Mater Interfaces 2019;11:16578-85.

180. Gao X, Zheng X, Tsao Y, et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators. J Am Chem Soc 2021;143:18188-95.

181. Duan C, Cheng Z, Li W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition. Energy Environ Sci 2022;15:3236-45.

182. Liu S, Wang H, Imanishi N, et al. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 2011;196:7681-6.

183. Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 2015;15:2740-5.

184. Fu KK, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci USA 2016;113:7094-9.

185. Wang Q, Wen Z, Jin J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem Commun 2016;52:1637-40.

186. Blanga R, Goor M, Burstein L, et al. The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 2016;20:3393-404.

187. Xia Y, Wang X, Xia X, et al. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chemistry 2017;23:15203-9.

188. Liu W, Lee SW, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2017:2.

189. Judez X, Zhang H, Li C, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) Polymer electrolyte for all solid-state Li-S cell. J Phys Chem Lett 2017;8:1956-60.

190. Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018;318:102-12.

191. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.

192. Lee J, Howell T, Rottmayer M, Boeckl J, Huang H. Free-standing PEO/LITFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries. J Electrochem Soc 2019;166:A416-22.

193. Xu X, Hou G, Nie X, et al. Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. J Power Sources 2018;400:212-7.

194. Hu J, Yuan H, Yang S, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. J Energy Chem 2022;71:612-8.

195. Dai J, Yang C, Wang C, Pastel G, Hu L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv Mater 2018;30:e1802068.

196. Nobili F, Tossici R, Marassi R, Croce F, Scrosati B. An AC impedance spectroscopic study of LixCoO2 at different temperatures. J Phys Chem B 2002;106:3909-15.

197. Zhang W, Weber DA, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces 2017;9:17835-45.

198. Wang C, Gong Y, Dai J, et al. In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries. J Am Chem Soc 2017;139:14257-64.

199. Ishiguro K, Nakata Y, Matsui M, et al. Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal. J Electrochem Soc 2013;160:A1690-3.

200. Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ionics 2015;273:51-4.

201. Gong Y, Zhang J, Jiang L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 Cathode in a working all-solid-state battery. J Am Chem Soc 2017;139:4274-7.

202. Yousaf M, Naseer U, Li Y, et al. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ Sci 2021;14:2670-707.

203. Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li 2S-P2S5solid electrolyte. Phys Chem Chem Phys 2013;15:18600-6.

204. Tan DHS, Banerjee A, Chen Z, Meng YS. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat Nanotechnol 2020;15:170-80.

205. Liang X, Wang L, Wu X, et al. Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J Energy Chem 2022;73:370-86.

206. Li G, Chen Z, Lu J. Lithium-sulfur batteries for commercial applications. Chem 2018;4:3-7.

207. Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy Mater 2022;1:100002.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/