REFERENCES

1. Lee W, Park SJ. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev 2014;114:7487-556.

2. Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995;268:1466-8.

3. Nielsch K, Choi JS, Schwirn K, Wehrspohn RB, Gösele U. Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett 2002;2:677-80.

4. Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nanotech 2008;3:234-9.

5. Lee K, Tang Y, Ouyang M. Self-ordered, controlled structure nanoporous membranes using constant current anodization. Nano Lett 2008;8:4624-9.

6. Gong D, Grimes CA, Varghese OK, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 2001;16:3331-4.

7. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 2005;44:7463-5.

8. Macak JM, Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 2006;52:1258-64.

9. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 2007;7:1286-9.

10. Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 2014;114:9385-454.

11. Yang Y, Albu SP, Kim D, Schmuki P. Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angew Chem Int Ed 2011;50:9071-5.

12. Yang Y, Lee K, Zobel M, et al. Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions. Adv Mater 2012;24:1571-5.

13. Lee H, Kumbhar VS, Lee J, Choi Y, Lee K. Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors. Electrochim Acta 2020;334:135618.

14. Lee CY, Lee K, Schmuki P. Anodic formation of self-organized cobalt oxide nanoporous layers. Angew Chem Int Ed 2013;52:2077-81.

15. Li Y, Wei B, Yu Z, et al. Bifunctional porous cobalt phosphide foam for high-current-density alkaline water electrolysis with 4000 h long stability. ACS Sustainable Chem Eng 2020;8:10193-200.

16. Yang Y, Fei H, Ruan G, Xiang C, M J. Tour. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater 2014;26:8163-8.

17. Jin B, Zhou X, Huang L, Licklederer M, Yang M, Schmuki P. Aligned MoOx/MoS2 core-shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew Chem Int Ed 2016;55:12252-56.

18. Szkoda M, Trzciński K, Siuzdak K, Lisowska-Oleksiak A. Photocatalytical properties of maze-like MoO3 microstructures prepared by anodization of Mo plate. Electrochim Acta 2017;228:139-45.

19. Jin B, Hejazi S, Chu H, et al. MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors. Appl Mater Today 2019;17:227-35.

20. Yanagishita T, Masuda T, Kondo T, Masuda H. Highly ordered anodic porous oxides of transition metals fabricated by anodization combined with a pretexturing process. Electrochem Commun 2021;123:106916.

21. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 2006;90:2011-75.

22. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mat Sci Eng R 2013;74:377-406.

23. Riboni F, Nguyen NT, So S, Schmuki P. Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horiz 2016;1:445-66.

24. Prakasam HE, Varghese OK, Paulose M, Mor GK, Grimes CA. Synthesis and photoelectrochemical properties of nanopores iron (III) oxide by potentiostatic anodization. Nanotechnology 2006;17:4285-91.

25. Song Y, Jiang L, Qi W, Lu C, Zhu X, Jia H. High-field anodization of aluminum in concentrated acid solutions and at higher temperatures. J Electroanal Chem 2012;673:24-31.

26. Yang J, Huang H, Lin Q, et al. Morphology defects guided pore initiation during the formation of porous anodic alumina. ACS Appl Mater Interfaces 2014;6:2285-91.

27. Albu SP, Ghicov A, Schmuki P. High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes. Phys Status Solidi RRL 2009;3:64-6.

28. Jagminas A, Mažeika K, Bernotas N, Klimas V, Selskis A, Baltrūnas D. Compositional and structural characterization of nanoporous films produced by iron anodizing in ethylene glycol solution. Appl Surf Sci 2011;257:3893-7.

29. Habazaki H, Konno Y, Aoki Y, Skeldon P, Thompson GE. Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride-ethylene glycol electrolytes with different water contents. J Phys Chem C 2010;114:18853-9.

30. Konno Y, Tsuji E, Skeldon P, Thompson GE, Habazaki H. Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing. J Solid State Electrochem 2012;16:3887-96.

31. Santamaria M, Terracina S, Konno Y, Habazaki H, Di Quarto F. Physicochemical characterization and photoelectrochemical analysis of iron oxide films. J Solid State Electrochem 2013;17:3005-14.

32. LaTempa TJ, Feng X, Paulose M, Grimes CA. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J Phys Chem C 2009;113:16293-8.

33. Rangaraju RR, Panday A, Raja KS, Misra M. Nanostructured anodic iron oxide film as photoanode for water oxidation. J Phys D Appl Phys 2009;42:135303.

34. Rangaraju RR, Raja KS, Panday A, Misra M. An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron. Electrochim Acta 2010;55:785-93.

35. Wu J, Liu L, Liu S, et al. High responsivity photoconductors based on iron pyrite nanowires using sulfurization of anodized iron oxide nanotubes. Nano Lett 2014;14:6002-9.

36. Pawlik A, Hnida K, Socha RP, Wiercigroch E, Małek K, Sulka GD. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron. Appl Surf Sci 2017;426:1084-93.

37. Lucas-Granados B, Sánchez-Tovar R, Fernández-Domene RM, García-Antón J. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: effect of the electrode rotation speed. Appl Surf Sci 2017;392:503-13.

38. Lucas-Granados B, Sánchez-Tovar R, Fernández-Domene RM, García-Antón J. Influence of electrolyte temperature on the synthesis of iron oxide nanostructures by electrochemical anodization for water splitting. Int J Hydrogen Energ 2018;43:7923-37.

39. Lee CY, Wang L, Kado Y, Killian MS, Schmuki P. Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. ChemSusChem 2014;7:934-40.

40. Mohapatra SK, John SE, Banerjee S, Misra M. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem Mater 2009;21:3048-55.

41. Yu SH, Shin J, Kim JJ, Lee KJ, Sung YE. Vertically aligned iron oxide nanotube arrays and porous magnetite nanostructures as three-dimensional electrodes for lithium ion microbatteries. RSC Adv 2012;2:12177-81.

42. Zhang Z, Hossain MF, Takahashi T. Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater Lett 2010;64:435-8.

43. Zhang Z, Hossain MF, Takahashi T. Self-assembled hematite α-Fe2O3 nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl Catal B Environ 2010;95:423-9.

44. Jun H, Im B, Kim JY, et al. Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy Environ Sci 2012;5:6375-82.

45. Pervez SA, Kim D, Farooq U, et al. Crystalline iron oxide nanotube arrays with high aspect ratio as binder free anode for Li-ion batteries. Phys Status Solidi A 2014;211:1-6.

46. Pervez SA, Kim D, Farooq U, et al. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB. ACS Appl Mater Interfaces 2014;6:11219-24.

47. He J, Mao M, Lu Y, Jiang W, Liang B. Superhydrophobic anodized Fe surface modified with fluoroalkylsilane for application in LiBr-water absorption refrigeration process. Ind Eng Chem Res 2017;56:495-504.

48. Cheng H, Zheng L, Tsang CK, et al. Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films. Electrochem Commun 2012;2:178-81.

49. Mushove T, Breault TM, Thompson LT. Synthesis and characterization of hematite nanotube arrays for photocatalysis. Ind Eng Chem Res 2015;54:4285-92.

50. Xie K, Guo M, Huang H, Liu Y. Fabrication of iron oxide nanotube arrays by electrochemical anodization. Corros Sci 2014;88:66-75.

51. Xie K, Li J, Lai Y, et al. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 2011;13:657-60.

52. Momeni MM, Ghayeb Y, Mohammadi F. Fe2O3 nanotube films prepared by anodisation as visible light photocatalytic. Surf Eng 2015;31:452-7.

53. Rozana M, Razak KA, Yew CK, Lockman Z. Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film. J Mater Res 2016;31:1681-90.

54. Yang Y, Zhou J, Detsch R, et al. Biodegradable nanostructures: degradation process and biocompatibility of iron oxide nanostructured arrays. Mat Sci Eng C 2018;85:203-13.

55. Xue Y, Jin W, Du H, Wang S, Zheng S, Zhang Y. Tuning a-Fe2O3 nanotube arrays for the oxygen reduction reaction in alkaline media. RSC Adv 2016;6:41878-84.

56. Makimizu Y, Nguyen NT, Tucek J, et al. Activation of α-Fe2O3 for photoelectrochemical water splitting strongly enhanced by low temperature annealing in low oxygen containing ambient. Chem Eur J 2020;26:2685-92.

57. Joseph JA, Nair SB, John KA, et al. Aluminium doping in iron oxide nanoporous structures to tailor material properties for photocatalytic applications. J Appl Electrochem 2020;50:81-92.

58. Lucas-Granados B, Sánchez-Tovar R, Fernández-Domene RM, Estívalis-Martínez JM, García-Antón J. How does anodization time affect morphological and photocatalytic properties of iron oxide nanostructures? J Mater Sci Technol 2020;38:159-69.

59. Martín-González M, Martinez-Moro R, Aguirre MH, Flores E, Caballero-Calero O. Unravelling nanoporous anodic iron oxide formation. Electrochim Acta 2020;330:135241.

60. Syrek K, Kemona S, Czopor J, Zaraska L, Sulka GD. Photoelectrochemical properties of anodic iron oxide layers. J Electroanal Chem 2022;909:116143.

61. Cao J, Gu Q, Gao N, et al. Designing micro-nano structure of anodized iron oxide films by metallographic adjustment on T8 steel. Ceram Int 2021;47:32954-62.

62. Zhu X, Liu L, Song Y, et al. Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatsh Chem 2008;139:999-1003.

63. Zhu XF, Song Y, Liu L, et al. Electronic currents and the formation of nanopores in porous anodic alumina. Nanotechnology 2009;20:475303.

64. Zhong XM, Yu DL, Zhang SY, et al. Fabrication and formation mechanism of triple-layered TiO2 nanotubes. J Electrochem Soc 2013;160:125-9.

65. Yu DL, Song Y, Zhu XF, Yang RQ. Han AJ. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure. Appl Surf Sci 2013;276:711-6.

66. Li C, Ni Y, Gong J, Song Y, Gong T, Zhu X. A review: research progress on the formation mechanism of porous anodic oxides. Nanoscale Adv 2022;4:322-33.

67. Kang JS, Noh Y, Kim J, et al. Iron oxide photoelectrode with multidimensional architecture for highly efficient photoelectrochemical water splitting. Angew Chem Int Ed 2017;56:6583-8.

68. Ali G, Park YJ, Hussain A, Cho SO. A novel route to the formation of 3D nanoflower-like hierarchical iron oxide nanostructure. Nanotechnology 2019;30:095601.

69. Sagu JS, Wijayantha KGU, Bohm M, Bohm S, Rout TK. Anodized steel electrodes for supercapacitors. ACS Appl Mater Interfaces 2016;8:6277-85.

70. Wang Q, Liu Q, Ni Y, Yang Y, Zhu X, Song Y. N-Doped FeS2 achieved by thermal annealing of anodized Fe in ammonia and sulfur atmosphere: applications for supercapacitors. J Electrochem Soc 2021;168:080522.

71. Wang H, Chen B, Zhang S, et al. Preparation and supercapacitive properties of 3D flower-like iron metaphosphates based on anodization of iron. Thin Solid Films 2022;742:139045.

72. Makimizu Y, Yoo J, Poornajar M, et al. Effects of low oxygen annealing on the photoelectrochemical water splitting properties of α-Fe2O3. J Mater Chem A 2020;8:1315-25.

73. Li Y, Cheng YF. Photocatalytic anti-bioadhesion and bacterial deactivation on nanostructured iron oxide films. J Mater Chem B 2018;6:1458-69.

74. Murphy AB, Barnes PRF, Randeniya LK, et al. Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 2006;31:1999-2017.

75. Alexander BD, Kulesza PJ, Rutkowska I, Augustynski J. Metal oxide photoanodes for solar hydrogen production. J Mater Chem 2008;18:2298-303.

76. Xue J, Zhang N, Shen Q, et al. In-situ construction of photoanode with Fe2O3/Fe3O4 heterojunction nanotube array to facilitate charge separation for efficient water splitting. J Alloy Compd 2022;918:165787.

77. Joseph JA, Nair SB, John SS, Remillard SK, Shaji S, Philip RR. Zinc-doped iron oxide nanostructures for enhanced photocatalytic and antimicrobial applications. J Appl Electrochem 2021;51:521-38.

78. Yu SH, Lee SH, Lee DJ, Sung YE, Hyeon T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016;12:2146-72.

79. Zeng Y, Yu M, Meng Y, Fang P, Lu X, Tong Y. Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 2016;6:1601053.

80. Li R, Gao N, Wang C, Ding G, Wang Y, Ma H. A facile strategy to in situ synthesize metal oxide/conductive polymer hybrid electrodes for supercapacitors. Soft Matter 2022;18:2517-21.

81. Hickling A, Taylor D. The anodic behaviour of metals. part V-copper. Trans Faraday Soc 1948;44:262-8.

82. Halliday JS. The anodic behaviour of copper in caustic soda solutions. Trans Faraday Soc 1954;50:171-8.

83. Ashworth Y, Fairhurst D. The anodic formation of Cu2O in alkaline solutions. J Electrochem Soc 1977;124:506.

84. Marchiano SL, Elsner CI, Arvia AJ. The anodic formation oxide films on copper and cathodic reduction of cuprous in sodium hydroxide solutions. J Appl Electrochem 1980;10:365-77.

85. Daltin AL, Addad A, Chopart JP. Potentiostatic deposition and characterization of cuprous oxide films and nanowires. J Cryst Growth 2005;282:414-20.

86. Lee YH, Leu IC, Wu MT, Yen JH, Fung KZ. Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition. J Alloy Compd 2007;427:213-8.

87. Shoesmith DW, Rummery TE, Owen D, Lee W. Anodic oxidation of copper in alkaline solutions I. nucleation and growth of cupric hydroxide films. J Electrochem Soc 1976;123:790-9.

88. Wu X, Bai H, Zhang J, Chen F, Shi G. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J Phys Chem B 2005;109:22836-42.

89. Allam NK, Grimes CA. Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater Lett 2011;65:1949-55.

90. Zhang Z, Wang P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 2012;22:2456-64.

91. Li Y, Chang S, Liu X, et al. Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 2012;85:393-8.

92. Hyam RS, Lee J, Cho E, Khim J, Lee H. Synthesis of copper hydroxide and oxide nanostructures via anodization technique for efficient photocatalytic application. J Nanosci Nanotechnol 2012;12:8396-400.

93. Cheng Z, Du M, Fu K, Zhang N, Sun K. pH-controllable water permeation through a nanostructured copper mesh film. ACS Appl Mater Interfaces 2012;4:5826-32.

94. Jiang W, He J, Xiao F, Yuan S, Lu H, Liang B. Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces. Ind Eng Chem Res 2015;54:6874-83.

95. Xiao F, Yuan S, Liang B, Li G, Pehkonen SO, Zhang TJ. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion. J Mater Chem A 2015;3:4374-88.

96. Zhao J, Shu X, Wang Y, et al. Construction of CuO/Cu2O@CoO core shell nanowire arrays for high-performance supercapacitors. Surf Coat Tech 2016;299:15-21.

97. Stepniowski WJ, Stojadinović S, Vasilić R, et al. Morphology and photoluminescence of nanostructured oxides grown by copper passivation in aqueous potassium hydroxide solution. Mater Lett 2017;198:89-92.

98. Wan J, Pang A, He D, Liu J, Suo H, Zhao C. A high-performance supercapacitor electrode based on three-dimensional poly-rowed copper hydroxide nanorods on copper foam. J Mater Sci Mater Electron 2018;29:2660-7.

99. Du X, Xia C, Li Q, Wang X, Yang T, Yin F. Facile fabrication of CuxO composite nanoarray on nanoporous copper as supercapacitor electrode. Mater Lett 2018;233:170-3.

100. Wang B, Cao B, Wang C, Zhang Y, Yao H, Wang Y. The optical and electrical performance of CuO synthesized by anodic oxidation based on copper foam. Materials 2020;13:5411.

101. Zhang R, Chen C, Yu H, et al. All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes. J Electroanal Chem 2021;893:115323.

102. Song G, Liu S, Xia C, Song L, Yang T, Li Q. Synthesis and application of Cu(OH)2 nanowires on nanoporous copper prepared by dealloying Ti50Cu50 and Ti25Zr25Cu50 amorphous alloys. Mater Charact 2021:178;111258.

103. Gong S, Liu X, Yue X, et al. Needle-like Cu(OH)2 in situ grown on nanoporous copper ribbon via anodizing route for supercapacitors. Mater Chem Phys 2022;283:126046.

104. Ghadge TS, Lokhande BJ. Post annealing temperature-dependent morphological and electrochemical properties of copper hydroxide thin film electrodes obtained by anodization of copper. J Mater Sci 2016;51:9879-88.

105. He D, Wang G, Liu G, Suo H, Zhao C. Construction of leaf-like CuO-Cu2O nanocomposites on copper foam for high-performance supercapacitors. Dalton Tran 2017;46:3318-24.

106. Anantharaj S, Sugime H, Noda S. Ultrafast growth of a Cu(OH)2-CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis. ACS Appl Mater Interfaces 2020;12:27327-38.

107. Anantharaj S, Sugime H, Yamaoka S, Noda S. Pushing the limits of rapid anodic growth of CuO/Cu(OH)2 nanoneedles on cu for the methanol oxidation reaction: Anodization pH Is the game changer. ACS Appl Energy Mater 2021;4:899-912.

108. Wang C, Cao J, Gao Z, Ji S, Ma H, Wang Y. Synthesizing robust cuprous oxide film with adjustable morphologies as surface-enhanced raman scattering substrate by copper anodization. Mater Chem Phys 2021;264:124470.

109. Şişman O, Kılınç N, Öztürk ZZ. Structural, electrical and H2 sensing properties of copper oxide nanowires on glass substrate by anodization. Sensor Actuat B 2016;236:1118-25.

110. Jerez DPO, Teijelo ML, Cervantes WR, et al. Nanostructuring of anodic copper oxides in fluoride-containing ethylene glycol media. J Electroanal Chem ;807:181-6.

111. Wang P, Ng YH, Amal R. Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 2013;5:2952-8.

112. Shu X, Zheng H, Xu G, et al. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties. Appl Surf Sci 2017;412:505-16.

113. Shu X, Wang Y, Cui J, et al. Supercapacitive performance of single phase CuO nanosheet arrays with ultra-long cycling stability. J Alloy Compd 2018;753:731-9.

114. Stępniowski WJ, Paliwoda D, Chen Z, Landskron K, Misiołek WZ. Hard anodization of copper in potassium carbonate aqueous solution. Mater Lett 2019;252:182-5.

115. Stępniowski WJ, Misiołek WZ. The influence of electrolyte usage on the growth of nanostructured anodic films on copper in sodium carbonate aqueous solution. J Electroanal Chem 2020;857:113491.

116. Abd-Elnaiem AM, Abdel-Rahim MA, Abdel-Latief AY, Mohamed AAR, Mojsilović K, Stępniowski WJ. Fabrication, characterization and photocatalytic activity of copper oxide nanowires formed by anodization of copper foams. Materials 2021;14:5030.

117. Stępniowski WJ, Paliwoda D, Abrahami ST, et al. Nanorods grown by copper anodizing in sodium carbonate. J Electroanal Chem 2020;857:113628.

118. Stępniowski WJ, Wang KK, Chandrasekar S, Paliwoda D, Nowak-Stępniowska A, Misiołek WZ. The impact of ethylenediaminetetraacetic acid (EDTA) additive on anodization of copper in KHCO3 - hindering Cu2+ re-deposition by EDTA influences morphology and composition of the nanostructures. J Electroanal Chem 2020;871:114245.

119. Babu TGS, Ramachandran T. Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model. Electrochim Acta 2010;55:1612-8.

120. Huang HY, Chien DJ, Huang GG, Chen PY. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid. Electrochim Acta 2012;65:204-9.

121. Vishwanath RS, Kandaiah S. Electrochemical preparation of crystalline γ-CuI thin films through potential-controlled anodization of copper and its photoelectrochemical investigations. J Solid State Electr 2016;20:2093-102.

122. Zhou C, Cheng J, Hou K, Zhu Z, Zheng Y. Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chem Eng J 2017;307:803-11.

123. Hu H, Wang X, Gong L, Yu X, Yang X, Zhao J. Preparation of leaflike copper phosphate films by anodic oxidation and their catalytic oxidation performance. Catal Commun 2017;95:46-9.

124. Antonopoulos IA, Karantonis A. Electrochemistry of copper in methanolic solutions: anodic oxidation and fabrication of hydrophobic surfaces. Electrochim Acta 2017;240:195-202.

125. Lu Y, Liu X, Qiu K, et al. Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. ACS Appl Mater Interfaces 2015;7:9682-90.

126. Liu S, Wang J, Pei X, et al. The reversible wetting transition between superhydrophilicity and superhydrophobicity of tremella-like CuxO@CuxS nanosheets prepared by one-step anodization and the application of on-demand oil/water separation. J Alloy Compd 2021;889:161793.

127. Meng M, Li R, Zuo L, Luo X, Zhang T. Fabrication of hierarchical porous metallic glasses decorated with Cu nanoparticles as integrated electrodes for high-performance non-enzymatic glucose sensing. Scripta Mater 2021;199:113884.

128. Sisman O, Kilinc N, Akkus UO, et al. Hybrid liquid crystalline zinc phthalocyanine@Cu2O nanowires for NO2 sensor application. Sens Actuators B Chem 2021;345:130431.

129. Yamamoto R, Kowalski D, Zhu R, et al. Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Appl Surf Sci 2021;537:147854.

130. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater 2011;10:456-61.

131. Joya KS, de Groot HJM. Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation. ACS Catal 2016;6:1768-71.

132. Zhang Z, Zhong C, Liu L, Teng X, Wu Y, Hu W. Electrochemically prepared cuprous oxide film for photo-catalytic oxygen evolution from water oxidation under visible light. Sol Energy Mater Sol Cells 2015;132:275-81.

133. Majumdar D, Ghosh S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. J Energy Storage 2021;34:101995.

134. Chen J, Xu J, Zhou S, Zhao N, Wong CP. Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J Mater Chem A 2015;3:17385-91.

135. Huber K. Anodic formation of coatings on magnesium, zinc, and cadmium. J Electrochem Soc 1953; 100:376-82.

136. Dirkse TP. Electrolytic oxidation of zinc in alkaline solutions. J Electrochem Soc 1955; 102:497-501.

137. Fry H, Whitaker M. The anodic oxidation of zinc and a method of altering the characteristics of the anodic films. J Electrochem Soc 1959;106:606-11.

138. Bockris JO, Nagy Z, Damjanovic A. On the deposition and dissolution of zinc in alkaline solutions. J Electrochem Soc 1972;119:285-95.

139. Szpak S, Gabriel CJ. The Zn-KOH system: the solution-precipitation path for anodic ZnO formation. J Electrochem Soc 1979;126:1914-23.

140. El Ela AH, Bahay ME, El-Raghy SM. Anodic oxidation and self-polarization of zinc metal. J Mater Sci 1981;16:2726-36.

141. Liu MB, Cook GM, Yao NP. Passivation of zinc anodes in KOH electrolytes J Electrochem Soc 1981;128:1663-8.

142. Nanto H, Minami T, Takata S. Intense white photoluminescence in ZnO thin film formed by anodization. J Mater Sci 1983;18:2721-6.

143. Yamaguchi Y, Yamazaki M, Yoshihara S, Shirakashi T. Photocatalytic ZnO films prepared by anodizing. J Electroanal Chem 1998;442:1-3.

144. Wu X, Lu G, Li C, Shi G. Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 2006;17:4936-40.

145. Sreekantan S, Gee LR, Lockman Z. Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide. J Alloy Compd 2009;476:513-18.

146. Huang GS, Wu XL, Cheng YC, Shen JC, Huang AP, Chu PK. Fabrication and characterization of anodic ZnO nanoparticles. Appl Phys A 2007;86:463-7.

147. Masuda R, Kowalski D, Kitano S, Aoki Y, Nozawa T, Habazaki H. Characterization of dark-colored nanoporous anodic films on zinc. Coatings 2020;10:1014.

148. Hu Z, Chen Q, Li Z, Yu Y, Peng LM. Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. J Phys Chem C 2010;114:881-9.

149. Kim YT, Park J, Kim S, Park DW, Choi J. Fabrication of hierarchical ZnO nanostructures for dye-sensitized solar cells. Electrochim Acta 2012;78:417-21.

150. Park J, Kim K, Choi J. Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization. Curr Appl Phys 2013;13:1370-5.

151. Samir N, Eissa DS, Allam NK. Self-assembled growth of vertically aligned ZnO nanorods for light sensing applications. Mater Lett 2014;137:45-8.

152. Yavaş A, Güler S, Erol M. Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties. J Aust Ceram Soc 2020;56:995-1003.

153. Tantray AM, Shah MA. Photo electrochemical ability of dense and aligned ZnO nanowire arrays fabricated through electrochemical anodization. Chem Phys Lett 2020;747:137346.

154. Tantray AM, Mir JF, Mir MA, Rather J, Shah MA. Random oriented ZnO nanorods fabricated through anodization of zinc in KHCO3 electrolyte. ECS J Solid State Sci 2021;10:081003.

155. Miles DO, Cameron PJ, Mattia D. Hierarchical 3D ZnO nanowire structures via fast anodization of zinc. J Mater Chem A 2015;3:17569-77.

156. Mah CF, Beh KP, Yam FK, Hassan Z. Rapid formation and evolution of anodized-Zn nanostructures in NaHCO3 solution. ESC J Solid State Sci Technol 2016;5:M105-12.

157. Zaraska L, Mika K, Syrek K, Sulka GD. Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. J Electroanal Chem 2017;801:511-20.

158. Zaraska L, Mika K, Hnida KE, et al. High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment. Mater Sci Eng B 2017;226:94-8.

159. Zamora-Peredo L, Ceballos-Valle A, Báez-Rodríguez A, Hernández-Torres J, García- González L, Orozco-Cruz R. Raman spectroscopy of ZnO nanowires obtained by electrochemical anodization: effect of thermal treatment, voltage and anodizing time. ECS Trans 2019;94:329-37.

160. Tantray AM, Shah MA. Photo electrochemical stability response of ZnO nanoflowers fabricated through single step electrochemical anodization. Chem Pap 2021;75:1739-47.

161. Lee W, Ji R, Gösele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 2006;5:741-7.

162. Chu SZ, Wada K, Inoue S, Isogai M, Yasumori A. Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv Mater 2005;17:2115-9.

163. Huang W, Yu M, Cao S, Wu L, Shen X, Song Y. Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting. Mater Res Bull 2019;111:24-33.

164. Kim SJ, Lee J, Choi J. Understanding of anodization of zinc in an electrolyte containing fluoride ions. Electrochim Acta 2008;53:7941-45.

165. Tello A, Boulett A, Sánchez J, et al. An unexplored strategy for synthesis of ZnO nanowire films by electrochemical anodization using an organic-based electrolyte. Morphological and optical properties characterization. Chem Phys Lett 2021;778:138825.

166. Katwal G, Paulose M, Rusakova IA, Martinez JE, Varghese OK. Rapid growth of zinc oxide nanotube−nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett 2016;16:3014-21.

167. Dong H, Zhou J, Virtanen S. Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications. Appl Surf Sci 2019;494:259-65.

168. Batista-Grau P, Sánchez-Tovar R, Fernández-Domene RM, García-Antón J. Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting. Surf Coat Tech 2020;381:125197.

169. Batista-Grau P, Fernández-Domene RM, Sánchez-Tovar R, García-Antón J. Control on the morphology and photoelectrocatalytic properties of ZnO nanostructures by simple anodization varying electrolyte composition. J Electroanal Chem 2021;880:114933.

170. Shrestha NK, Lee K, Hahn R, Schmuki P. Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte. Electrochem Commun 2013;34:9-13.

171. Sanz-Marco A, Sánchez-Tovar R, Bajo MM, Fernández-Domene RM, García-Antón J. Cathodoluminescence characterization of ZnO/ZnS nanostructures anodized under hydrodynamic conditions. Electrochim Acta 2018;269:553-9.

172. Aydın EB. Electrochemical synthesize and characterization of ZnO/ZnS nanostructures for hydrogen production. Int J Energy Res 2020;44:1-16.

173. Basu PK, Bhattacharyya P, Saha N, Saha H, Basu S. The superior performance of the electrochemically grown ZnO thin films as methane sensor. Sensor Actuat B 2008;133:357-63.

174. Basu PK, Bontempi E, Maji S, Saha H, Basu S. Variation of optical band gap in anodically grown nanocrystalline ZnO thin films at room temperature-effect of electrolyte concentrations. J Mater Sci Mater Electron 2009;20:1203-7.

175. Shetty A, Nanda KK. Synthesis of zinc oxide porous structures by anodization with water as an electrolyte. Appl Phys A 2012;109:151-7.

176. Voon CH, Tukiman N. T, Lim BY, et al. Synthesis of zinc oxide thin film by anodizing. In 2014 IEEE International Conference on Semiconductor Electronics, 2014. p. 420-3.

177. Ono S, Kobayashi Y, Asoh H. Self-organized and high aspect ratio nanoporous zinc oxide prepared by anodization. ECS Trans 2008;13:183-9.

178. Dong J, Liu Z, Dong J, et al. Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. RSC Adv 2016;6:72968-74.

179. Mika K, Socha RP, Nyga P, et al. Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochim Acta 2019;305:349-59.

180. Shrestha NK, Hahn R, Lee K, Tighineanu A, Schmuki P. Electrochemically assisted self-assembling of ZnF2-ZnO nanospheres: formation of hierarchical thin porous films. ECS Electrochem Lett 2014;3:E1-E3.

181. Diomidis N, Celis JP. Effect of hydrodynamics on zinc anodizing in silicate-based electrolytes. Surf Coat Technol 2005;195:307-13.

182. Kim SJ, Choi J. Self-assembled arrays of ZnO stripes by anodization. Electrochem Commun 2008;10:175-9.

183. He S, Zheng M, Yao L, et al. Preparation and properties of ZnO nanostructures by electrochemical anodization method. Appl Surf Sci 2010;256:2557-62.

184. Zhao J, Wang X, Liu J, Meng Y, Xu X, Tang C. Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method. Mater Chem Phys 2011;126:555-9.

185. Zhao J, Wang X, Sun Y, Liu J, Tang C. Preparation and formation mechanism of microporous spheric zinc phosphate. J Solid State Electrochem 2011;15:1861-5.

186. Farrukh MA, Thong CK, Adnan R, Kamarulzaman MA. Preparation and characterization of zinc oxide nanoflakes using anodization method and their photodegradation activity on methylene blue. Russ J Phys Chem A 2012;86:2041-8.

187. Heo B, Kim YT, Choi J. Electrochemical synthesis of zinc ricinoleate and its application in ammonia adsorption. J Environ Chem Eng 2021;9:105083.

188. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T. Recent progress in processing and properties of ZnO. Prog Mater Sci 2005;50:293-340.

189. Chang SS, Yoon SO, Park HJ, Sakai A. Luminescence properties of anodically etched porous Zn. Appl Surf Sci 2000;158:330-4.

190. Yang J, Liu G, Lu J, Qiu Y, Yang S. Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate. Appl Phys Lett 2007;90:103109.

191. Galstyan V, Comini E, Baratto C, Faglia G, Sberveglieri G. Nanostructured ZnO chemical gas sensors. Ceram Int 2015;41:14239-44.

192. Gilani S, Ghorbanpour M, Jadid AP. Antibacterial activity of ZnO films prepared by anodizing. J Nanostruct Chem 2016;6:183-9.

193. Ramirez-Canon A, Miles DO, Cameron PJ, Mattia D. Zinc oxide nanostructured films produced via anodization: a rational design approach. RSC Adv 2013;3:25323-30.

194. Ramirez-Canon A, Medina-Llamas M, Vezzoli M, Mattia D. Multiscale design of ZnO nanostructured photocatalysts. Phys Chem Chem Phys 2018;20:6648-56.

195. Taylor CM, Ramirez-Canon A, Wenk J, Mattia D. Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts. J Hazard Mater 2019;378:120799.

196. Ozdemir ET, Kartal U, Dikici T, Erol M, Yurddaskal M. A comparative study on structural, morphological and photocatalytic properties of anodically grown ZnO nanowires under varying parameters. J Mater Sci Mater Electron 2021;32:27398-408.

197. Batista-Grau P, Fernández-Domene RM, Sánchez-Tovar R, Blasco-Tamarit E, Solsona B, García-Antón J. Indirect charge transfer of holes via surface states in ZnO nanowires for photoelectrocatalytic applications. Ceram Int 2022;48:21856-67.

198. Zhu E, Li F, Zhao Q, et al. Preparation, parameter optimization of anodized ZnO films and their photocatalytic performance in organic dye degradation in wastewater. Appl Phys A 2022;128:697.

199. Huang MC, Wang TH, Wu BJ, Lin JC, Wu CC. Anodized ZnO nanostructures for photoelectrochemical water splitting. Appl Surf Sci 2016;360:442-50.

200. Mika K, Syrek K, Uchacz T, Sulka GD, Zaraska L. Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting. Electrochim Acta 2022;414:140176.

201. Chang H, Wu YR, Han X, Yi TF. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003.

202. Chen X, Liu J, Yuan T, et al. Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction. Energy Mater 2022;2:200028.

203. Feng S, Tang Y, Xiao T. Anodization, precursor route to flowerlike patterns composed of nanoporous tin oxide nanostrips on tin substrate. J Phys Chem C 2009;113:4809-13.

204. Lee JW, Park SJ, Choi WS, Shin HC. Well-defined meso- to macro-porous film of tin oxides formed by an anodization process. Electrochim Acta 2011;56:5919-25.

205. Wang M, Yang H, Liu Y. Current oscillations during potentiostatic anodization of tin in alkaline electrolytes. Electrochim Acta 2011;56:7051-7.

206. Bian H, Tian Y, Lee C, Yuen MF, Zhang W, Li YY. Mesoporous SnO2 nanostructures of ultrahigh surface areas by novel anodization. ACS Appl Mater Interfaces 2016;8:28862-71.

207. Li P, Niu D, He M, et al. Growth model of the tin anodizing process and the capacitive performance of porous tin oxides. J Phys Chem C 2020;124:3050-58.

208. Gao N, Cao J, Wang C, et al. Study on the crystallinity and oxidation states of nanoporous anodized tin oxide films regulated by annealing treatment for supercapacitor application. Langmuir 2022;38:164-73.

209. Yanagishita T, Masuda T, Masuda H. Preparation of ordered nanohole array structures by anodization of prepatterned Cu, Zn, and Ni. RSC Adv 2022;12:6848-54.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/