REFERENCES

1. Gerard O, Numan A, Krishnan S, Khalid M, Subramaniam R, Kasi R. A review on the recent advances in binder-free electrodes for electrochemical energy storage application. J Energy Storage 2022;50:104283.

2. Yu C, Gong Y, Chen R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small 2018:e1801203.

3. Xiao J, Han J, Zhang C, Ling G, Kang F, Yang Q. Dimensionality, function and performance of carbon materials in energy storage devices. Adv Energy Mater 2022;12:2100775.

4. Liu Y, Xu J, Li J, et al. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coord Chem Rev 2022;460:214477.

5. Shin J, Lee J, Park Y, Choi JW. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci 2020;11:2028-44.

6. Dai H, Zhou J, Qin G, Sun G. Enhanced Jahn-Teller distortion boosts molybdenum trioxide’s superior lithium ion storage capability. Dalton Trans 2022;51:524-31.

7. Dai H, Wang L, Zhao Y, et al. Recent advances in molybdenum-based materials for lithium-sulfur batteries. Research 2021;2021:5130420.

8. Zhang X, Li Z, Luo L, Fan Y, Du Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022;238:121652.

9. Rivera-barrera J, Muñoz-galeano N, Sarmiento-maldonado H. SoC estimation for lithium-ion batteries: review and future challenges. Electronics 2017;6:102.

10. Muralidharan N, Self EC, Dixit M, et al. Next-generation cobalt-free cathodes - a prospective solution to the battery industry’s cobalt problem. Adv Energy Mater 2022;12:2103050.

11. Li J, Fleetwood J, Hawley WB, Kays W. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev 2022;122:903-56.

12. Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 2020;6:eaba4098.

13. Sui Y, Ji X. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem Rev 2021;121:6654-95.

14. Bin D, Wen Y, Wang Y, Xia Y. The development in aqueous lithium-ion batteries. J Energy Chem 2018;27:1521-35.

15. Jiang X, Chen Y, Meng X, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 2022;191:448-70.

16. Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv 2018;4:eaas9820.

17. Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 2014;4:1300882.

18. Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun 2020;11:2499.

19. Yang Z, Zhang J, Kintner-Meyer MC, et al. Electrochemical energy storage for green grid. Chem Rev 2011;111:3577-613.

20. Yong B, Ma D, Wang Y, Mi H, He C, Zhang P. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv Energy Mater 2020;10:2002354.

21. Peng J, Zhang W, Wang S, et al. The emerging electrochemical activation tactic for aqueous energy storage: fundamentals, applications, and future. Adv Funct Mater 2022;32:2111720.

22. Lee B, Lee HR, Kim H, Chung KY, Cho BW, Oh SH. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem Commun 2015;51:9265-8.

23. Tang Y, Zheng S, Xu Y, Xiao X, Xue H, Pang H. Advanced batteries based on manganese dioxide and its composites. Energy Stor Mater 2018;12:284-309.

24. Qian J, Jin H, Chen B, et al. Aqueous manganese dioxide ink for paper-based capacitive energy storage devices. Angew Chem Int Ed Engl 2015;54:6800-3.

25. Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016:1.

26. Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous Zinc-ion batteries. Energy Environ Sci 2019;12:3288-304.

27. Ming J, Guo J, Xia C, Wang W, Alshareef HN. Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R Rep 2019;135:58-84.

28. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous Zinc-ion batteries. ACS Energy Lett 2018;3:2480-501.

29. Dong C, Xu F, Chen L, Chen Z, Cao Y. Design strategies for high-voltage aqueous batteries. Small Struct 2021;2:2100001.

30. Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 2017;46:6816-54.

31. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014;7:1597.

32. Huang J, Yuan K, Chen Y. Wide voltage aqueous asymmetric supercapacitors: advances, strategies, and challenges. Adv Funct Mater 2022;32:2108107.

33. Wang S, Li T, Yin Y, Chang N, Zhang H, Li X. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy 2022;96:107120.

34. Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 2019;62:550-87.

35. Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 2015;44:699-728.

36. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 2015;44:7484-539.

37. He P, Chen Q, Yan M, et al. Building better Zinc-ion batteries: a materials perspective. EnergyChem 2019;1:100022.

38. Lv Y, Xiao Y, Ma L, Zhi C, Chen S. Recent advances in electrolytes for “beyond aqueous” Zinc-ion batteries. Adv Mater 2022;34:e2106409.

39. Zhou T, Zhu L, Xie L, et al. Cathode materials for aqueous Zinc-ion batteries: a mini review. J Colloid Interface Sci 2022;605:828-50.

40. Gao Y, Zhao L. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem Eng J 2022;430:132745.

41. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 2021;403:126352.

42. Hu Y, Wu Y, Wang J. Manganese-oxide-based electrode materials for energy storage applications: how close are we to the theoretical capacitance? Adv Mater 2018;30:e1802569.

43. Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R. Performance of high energy density symmetric supercapacitor based on sputtered MnO2 nanorods. ChemistrySelect 2016;1:3885-91.

44. Yu N, Yin H, Zhang W, Liu Y, Tang Z, Zhu M. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv Energy Mater 2016;6:1501458.

45. Radhamani AV, Shareef KM, Rao MS. ZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors. ACS Appl Mater Interfaces 2016;8:30531-42.

46. Zhou D, Lin H, Zhang F, et al. Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes. Electrochim Acta 2015;161:427-35.

47. Cai K, Luo SH, Feng J, et al. Recent advances on spinel zinc manganate cathode materials for Zinc-ion batteries. Chem Rec 2022;22:e202100169.

48. Davoglio RA, Cabello G, Marco JF, Biaggio SR. Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochim Acta 2018;261:428-35.

49. Guo C, Liu H, Li J, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim Acta 2019;304:370-7.

50. Li Y, Zhang D, Huang S, Yang HY. Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous Zinc-ion batteries. Nano Energy 2021;85:105969.

51. Zhang Z, Li W, Shen Y, et al. Issues and opportunities of manganese-based materials for enhanced Zn-ion storage performances. J Energy Storage 2022;45:103729.

52. Xie Q, Cheng G, Xue T, et al. Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery. Mater Today Energy 2022;24:100934.

53. Wang M, Zheng X, Zhang X, et al. Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv Energy Mater 2021;11:2002904.

54. Nam KW, Kim H, Choi JH, Choi JW. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ Sci 2019;12:1999-2009.

55. Wu Y, Fee J, Tobin Z, et al. Amorphous manganese oxides: an approach for reversible aqueous Zinc-ion batteries. ACS Appl Energy Mater 2020;3:1627-33.

56. Li S, Liu Q, Qi L, Lu L, Wang H. Progress in research on manganese dioxide electrode materials for electrochemical capacitors. Chinese J Anal Chem 2012;40:339-46.

57. Wang J, Dong S, Ding B, et al. Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl Sci Rev 2017;4:71-90.

58. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 2006;153:A2171.

59. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 2010;48:3825-33.

60. Zhang Y, An Y, Jiang J, et al. High performance aqueous sodium-ion capacitors enabled by pseudocapacitance of layered MnO2. Energy Technol 2018;6:2146-53.

61. Chen Q, Jin J, Kou Z, et al. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables Zinc-ion hybrid supercapacitor of battery-level energy density. Small 2020;16:e2000091.

62. Tang X, Zhu S, Ning J, Yang X, Hu M, Shao J. Charge storage mechanisms of manganese dioxide-based supercapacitors: a review. New Carbon Mater 2021;36:702-10.

63. Guo W, Yu C, Li S, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 2019;57:459-72.

64. Kim SJ, Wu D, Sadique N, et al. Unraveling the dissolution-mediated reaction mechanism of α-MnO2 cathodes for aqueous Zn-ion batteries. Small 2020;16:e2005406.

65. Qiu C, Zhu X, Xue L, et al. The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery. Electrochim Acta 2020;351:136445.

66. Julien CM, Mauger A. Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 2017;7:396.

67. Majumdar D. Review on current progress of MnO2-based ternary nanocomposites for supercapacitor applications. ChemElectroChem 2021;8:291-336.

68. Shin J, Seo JK, Yaylian R, Huang A, Meng YS. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int Mater Rev 2020;65:356-87.

69. Messaoudi B, Joiret S, Keddam M, Takenouti H. Anodic behaviour of manganese in alkaline medium. Electrochim Acta 2001;46:2487-98.

70. Roberts AJ, Slade RC. Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochim Acta 2010;55:7460-9.

71. Wu B, Zhang G, Yan M, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018;14:e1703850.

72. Wang J, Dong L, Xu C, Ren D, Ma X, Kang F. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/Polyaniline/MnO2 composite textiles. ACS Appl Mater Interfaces 2018;10:10851-9.

73. Fu Y, Gao X, Zha D, Zhu J, Ouyang X, Wang X. Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. J Mater Chem A 2018;6:1601-11.

74. Fu W, Zhao E, Ren X, Magasinski A, Yushin G. Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv Energy Mater 2018;8:1703454.

75. Qi H, Bo Z, Yang S, et al. Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Stor Mater 2019;16:607-18.

76. Chen L, Zhang M, Yang X, et al. Sandwich-structured MnO2@N-doped carbon@MnO2 nanotubes for high-performance supercapacitors. J Alloys Compd 2017;695:3339-47.

77. Han D, Jing X, Xu P, Ding Y, Liu J. Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes. J Solid State Chem 2014;218:178-83.

78. Xiong P, Ma R, Sakai N, Bai X, Li S, Sasaki T. Redox active cation intercalation/deintercalation in two-dimensional layered MnO2 nanostructures for high-rate electrochemical energy storage. ACS Appl Mater Interfaces 2017;9:6282-91.

79. Jabeen N, Xia Q, Savilov SV, Aldoshin SM, Yu Y, Xia H. Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl Mater Interfaces 2016;8:33732-40.

80. Gao P, Metz P, Hey T, et al. The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat Commun 2017;8:14559.

81. Chen S, Zhang M, Ma X, Li L, Zhou X, Zhang Z. Asymmetric supercapacitors by integrating high content Na+/K+-inserted MnO2 nanosheets and layered Ti3C2Tx paper. Electrochim Acta 2020;332:135497.

82. Zhao Q, Song A, Ding S, et al. Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv Mater 2020;32:e2002450.

83. Peng H, Fan H, Sui J, Wang C, Zhang W, Wang W. Sodium in situ intercalated ultrathin δ-MnO2 flakes electrode with enhanced intercalation capacitive performance for asymmetric supercapacitors. ChemistrySelect 2020;5:869-74.

84. Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 2017;29:1700804.

85. Jiang H, Wang Z, Yang Q, et al. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim Acta 2018;290:695-703.

86. Chi HZ, Li Y, Xin Y, Qin H. Boron-doped manganese dioxide for supercapacitors. Chem Commun 2014;50:13349-52.

87. Choi C, Sim HJ, Spinks GM, Lepró X, Baughman RH, Kim SJ. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor. Adv Energy Mater 2016;6:1502119.

88. Wang Y, Zhang Y, Gao Y, Sheng G, ten Elshof JE. Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy 2020;68:104306.

89. Wang J, Wang J, Liu H, et al. A highly flexible and lightweight MnO2/graphene membrane for superior Zinc-ion batteries. Adv Funct Mater 2021;31:2007397.

90. Tong H, Li T, Liu J, et al. Fabrication of the oxygen vacancy amorphous MnO2/Carbon nanotube as cathode for advanced aqueous Zinc-ion batteries. Energy Technol 2021;9:2000769.

91. Shi J, Wang S, Wang Q, et al. A new flexible Zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode. J Power Sources 2020;446:227345.

92. Zhao L, Wang W, Zhao H, et al. Controlling oxygen vacancies through gas-assisted hydrothermal method and improving the capacitive properties of MnO2 nanowires. Appl Surf Sci 2019;491:24-31.

93. Yan L, Shen C, Niu L, et al. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2. ChemSusChem 2019;12:3571-81.

94. Zhai T, Xie S, Yu M, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 2014;8:255-63.

95. Ou T, Hsu C, Hu C. Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application. J Electrochem Soc 2015;162:A5124-32.

96. Li J, Ren Y, Wang S, Ren Z, Yu J. Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Appl Mater Today 2016;3:63-72.

97. Kang J, Hirata A, Kang L, et al. Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem Int Ed Engl 2013;52:1664-7.

98. Wang Z, Wang F, Li Y, Hu J, Lu Y, Xu M. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance. Nanoscale 2016;8:7309-17.

99. Peng R, Wang H, Wei X, Wu Z, Yu P, Luo Y. One-step synthesis of vacancy-rich MnO2-x/reduced graphene oxide composite film for high electrochemical performance. ChemElectroChem 2019;6:1122-8.

100. Shi P, Li L, Hua L, et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 2017;11:444-52.

101. Gou L, Xue D, Mou K, et al. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J Electrochem Soc 2019;166:A3362-8.

102. Zhang J, Li Y, Zhang Y, et al. The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: towards flexible supercapacitors with high energy density and long service life. Nano Energy 2018;43:91-102.

103. Xu J, Sun Y, Lu M, et al. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J 2018;334:1466-76.

104. Shinde PA, Lokhande VC, Patil AM, Ji T, Lokhande CD. Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor. Int J Hydrog Energy 2018;43:2869-80.

105. Zhu S, Li L, Liu J, et al. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 2018;12:1033-42.

106. Liu N, Su Y, Wang Z, et al. Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano 2017;11:7879-88.

107. Zhou J, Yu J, Shi L, et al. A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 2018;14:e1803786.

108. Chen Q, Meng Y, Hu C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources 2014;247:32-9.

109. Tan X, Liu S, Guo Q, et al. Synthesis and characterisation of amorphous MnO2/CNT via solid-state microwave for high-performance supercapacitors. Int J Energy Res 2020;44:4556-67.

110. Chen Y, Zhang X, Xu C, Xu H. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim Acta 2019;309:424-31.

111. Zhang QZ, Zhang D, Miao ZC, Zhang XL, Chou SL. Research progress in MnO2-carbon based supercapacitor electrode materials. Small 2018;14:e1702883.

112. Yu G, Hu L, Vosgueritchian M, et al. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 2011;11:2905-11.

113. Jia H, Cai Y, Lin J, et al. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv Sci 2018;5:1700887.

114. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater 2018;28:1802564.

115. Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous Zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 2020;120:7795-866.

116. Alfaruqi MH, Gim J, Kim S, et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 2015;288:320-7.

117. Lee B, Yoon CS, Lee HR, Chung KY, Cho BW, Oh SH. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci Rep 2014;4:6066.

118. Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity Zinc-ion battery system. Chem Mater 2015;27:3609-20.

119. Deng Y, Wan L, Xie Y, Qin X, Chen G. Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv 2014;4:23914-35.

120. Li F, Liu Y, Wang G, et al. The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible Zinc-ion batteries. J Mater Chem A 2021;9:9675-84.

121. Liu G, Huang H, Bi R, Xiao X, Ma T, Zhang L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous Zinc-ion batteries. J Mater Chem A 2019;7:20806-12.

122. Liu M, Zhao Q, Liu H, et al. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019;64:103942.

123. Li G, Huang Z, Chen J, et al. Rechargeable Zn-ion batteries with high power and energy densities: a two-electron reaction pathway in birnessite MnO2 cathode materials. J Mater Chem A 2020;8:1975-85.

124. Jin Y, Zou L, Liu L, et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv Mater 2019;31:e1900567.

125. Guo X, Zhou J, Bai C, Li X, Fang G, Liang S. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater Today Energy 2020;16:100396.

126. Peng H, Fan H, Yang C, Tian Y, Wang C, Sui J. Ultrathin δ-MnO2 nanoflakes with Na+ intercalation as a high-capacity cathode for aqueous Zinc-ion batteries. RSC Adv 2020;10:17702-12.

127. Sun T, Nian Q, Zheng S, Shi J, Tao Z. Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous Zinc-ion battery. Small 2020;16:e2000597.

128. Fang G, Zhu C, Chen M, et al. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous Zinc-ion battery. Adv Funct Mater 2019;29:1808375.

129. Zhai T, Wan L, Sun S, et al. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 2017;29:1604167.

130. Zhang Y, Deng S, Pan G, et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible Zinc ion storage. Small Methods 2020;4:1900828.

131. Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous Zinc-ion battery. Nat Commun 2018;9:2906.

132. Zhang Q, Yang Z, Ji H, et al. Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat 2021;1:432-47.

133. Wang D, Wang L, Liang G, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019;13:10643-52.

134. Han M, Huang J, Liang S, et al. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 2020;23:100797.

135. Zhao J, Xu Z, Zhou Z, et al. A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based Zinc-ion batteries with perovskite solar cells. ACS Nano 2021;15:10597-608.

136. Xiong T, Yu ZG, Wu H, et al. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous Zinc ion battery. Adv Energy Mater 2019;9:1803815.

137. Xiong T, Lee WSV, Xue J. K+-intercalated MnO2 electrode for high performance aqueous supercapacitor. ACS Appl Energy Mater 2018; doi: 10.1021/acsaem.8b01160.

138. Zhao Q, Song A, Zhao W, et al. Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew Chem Int Ed Engl 2021;60:4169-74.

139. Wang J, Sun X, Zhao H, et al. Superior-performance aqueous Zinc ion battery based on structural transformation of MnO2 by rare earth doping. J Phys Chem C 2019;123:22735-41.

140. Zhang Y, Deng S, Luo M, et al. Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous Zinc ion batteries. Small 2019;15:e1905452.

141. Cai Y, Chua R, Huang S, Ren H, Srinivasan M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable Zinc-ion battery. Chem Eng J 2020;396:125221.

142. Chen X, Li W, Zeng Z, Reed D, Li X, Liu X. Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chem Eng J 2021;405:126969.

143. Wu F, Gao X, Xu X, et al. MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth for flexible aqueous Zinc-ion batteries. ChemSusChem 2020;13:1537-45.

144. Long J, Yang F, Cuan J, et al. Boosted charge transfer in twinborn α-(Mn2O3-MnO2) heterostructures: toward high-rate and ultralong-life Zinc-ion batteries. ACS Appl Mater Interfaces 2020;12:32526-35.

145. Chen J, Cheng F. Combination of lightweight elements and nanostructured materials for batteries. ACC Chem Res 2009;42:713-23.

146. Ling W, Wang P, Chen Z, et al. Nanostructure design strategies for aqueous Zinc-ion batteries. ChemElectroChem 2020;7:2957-78.

147. Li D, Gao Q, Zhang H, et al. MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries. Appl Surf Sci 2020;510:145458.

148. Zhang X, Wu S, Deng S, et al. 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries. Small Methods 2019;3:1900525.

149. Zhu X, Cao Z, Wang W, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx MXene. ACS Nano 2021;15:2971-83.

150. Huang J, Tang X, Liu K, Fang G, He Z, Li Z. Interfacial chemical binding and improved kinetics assisting stable aqueous Zn-MnO2 batteries. Mater Today Energy 2020;17:100475.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/