REFERENCES

1. Kim JH. Grand challenges and opportunities in batteries and electrochemistry. Front Batter Electrochem 2022;1:1066276.

2. Chang H, Wu YR, Han X, Yi TF. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003.

3. Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry - A review and perspective. Energy Stor Mater 2021;36:186-212.

4. Lee J, Moon J, Han SA, et al. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano 2019;13:9607-19.

5. Bi Z, Guo X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater 2022;2:200011.

6. Kitsche D, Tang Y, Ma Y, et al. High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte. ACS Appl Energy Mater 2021;4:7338-45.

7. Jungjohann KL, Gannon RN, Goriparti S, et al. Cryogenic laser ablation reveals short-circuit mechanism in lithium metal batteries. ACS Appl Energy Mater 2021;6:2138-44.

8. Xiao Y, Xu R, Xu L, Ding JF, Huang JQ. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater 2021;1:100013.

9. Soto FA, Mzrzouk A, ElMellouhi F, Balbuena. Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem Mater 2018;30:3315-22.

10. Ramasubramanian A, Yurkiv V, Foroozan T, Ragone M, Shahbazian-yassar R, Mashayek F. Stability of solid-electrolyte interphase (SEI) on the lithium metal surface in lithium metal batteries (LMBs). ACS Appl Energy Mater 2020;3:10560-67.

11. Hu Z, Zhang S, Dong S, et al. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem Mater 2017;29:4682-89.

12. Schwager P, Bülter H, Plettenberg I, Wittstock. Review of local in situ probing techniques for the interfaces of lithium-ion and lithium-oxygen batteries. Energy Technol 2017;4:1472-85.

13. Liu T, Lin L, Bi X, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat Nanotechnol 2019;14:50.

14. Diddens D, Appiah WA, Marbrouk Y, Heuer A, Vegge T, Bhowmik A. Modeling the solid electrolyte interphase: machine learning as a game changer? Adv Mater Interfaces 2022;9:2101734.

15. Lee HJ, Kim HR, Lee KJ, et al. Crack healing mechanism by application of stack pressure to the carbon-based composite anode of an all-solid-state battery. ACS Appl Energy Mater 2022;5:5227-35.

16. Liu L, Guan P. Phase-field modeling of solid electrolyte interphase (SEI) evolution: considering cracking and dissolution during battery cycling. ECS Trans 2018;85:1041-51.

17. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. High-energy Li metal battery with lithiated host. Joule 2019;3:732-44.

18. Kang D, Jin D, Moon J, et al. AgNO3-preplanted Li metal powder electrode: preliminary formation of lithiophilic Ag and a Li3N-rich solid electrolyte interphase. Chem Eng J 2023;452:139409.

19. Kang DW, Moon J, Choi HY, Shin HC, Kim BG. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J Power Sources 2021;490:229504.

20. Choi SH, Hyeon YH, Shin HR, et al. Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon frameworks. Nano Energy 2021;88:106243.

21. Lee J, Choi SH, Qutaish H, et al. Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Stor Mater 2021;37:315-24.

22. Kim J, Lee J, Yun J, et al. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv Funct Mater 2020;30:1910538.

23. Qutaish H, Suh JH, Han SA, Kim S, Park MS, Kim JH. Regulation of ionic conductivity and lithium affinity of porous carbon framework in Li metal batteries through oxidized nitrogen groups. Appl Surf Sci 2022;605:154757.

24. Yang T, Sun Y, Qian T, et al. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer. Energy Stor Mater 2020;26:385-90.

25. An D. Film formation on lithium anode in propylene carbonate. J Electrochem Soc 1970;117:C248-&.

26. Peled E. The Electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J Electrochem Soc 1979;126:2047-51.

27. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood D. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016;105:57-76.

28. Spotte-Smith EWC, Kam RL, Barter D, et al. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries. ACS Energy Lett 2022;7:1446-1453.

29. Sun SY, Yao N, Jin CB, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase. Angew Chem Int Ed 2022;61:e202208743.

30. Bedrov D, Borodin O, Hooper JB. Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): insight from atomistic molecular dynamics simulations. J Phys Chem C 2017;121:16098-109.

31. Yu Q, Jiang K, Yu C, et al. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin Chem Lett 2021;32:2659-78.

32. Wu M, Li Y, Liu X, Yang S, Ma J, Dou S. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat 2021;2:5-11.

33. Liu G, Lu W. A Model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. J Electrochem Soc 2017;164:A1826-33.

34. Li C, Li Y, Chen Z, Zhou Y, Bai F, Li T. Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries. Chin Chem Lett 2022:107852.

35. Xie J, Sun S, Chen X, et al. Fluorinating the Solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew Chem Int Ed 2022;61:e202204776.

36. Ma X, Shen X, Chen X, et al. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes. Small Struct 2022;3:2200071.

37. Vu TT, Kim BG, Kim JH, Moon J. Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction. J Mater Chem A 2021;9:22833-41.

38. Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy 2018;3:227-35.

39. Hao F, Verma A, Mukherjee PP. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes. J Mater Chem A 2018;6:19664-74.

40. Pathak R, Chen K, Gurung A, et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun 2020;11:93.

41. Cheng X, Yan C, Zhang X, Liu H, Zhang Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett 2018;3:1564-70.

42. Hou Z, Zhang J, Wang W, Chen Q, Li B, Li C. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J Energy Chem 2020;45:7-17.

43. Momma T, Matsunaga M, Mukoyama D, Osaka T. Ac impedance analysis of lithium ion battery under temperature control. J Power Sources 2012;216:304-7.

44. Han B, Feng D, Li S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries. Nano Lett 2020;20:4029-37.

45. Liu L, Zhu M. Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical model of Li-ion batteries. ECS Trans 2014;61:43-61.

46. Vadhva P, Hu J, Johnson M, et al. Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future outlook. ChemElectroChem 2021;8:1930-47.

47. Peled E, Menkin S. Review SEI: past, present and future. J Electrochem Soc 2018;164:A1703-19.

48. Kang DW, Park SS, Choi HJ, et al. One-dimensional porous Li-confinable hosts for high-rate and stable li-metal batteries. ACS Nano 2022;16:11892-901.

49. Wenzel S, Sedlmaier S J, Dietrich C, Zeier W, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal anodes. Solid State Ion 2018;318:102-12.

50. Guo R, Gallent BM. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem Mater 2020;32:5525-33.

51. Li C, Guo X, Gu L, Samuelis D, Maier J. Ionic space-charge depletion in lithium fluoride thin films on sapphire (0001) substrates. Adv Funct Mater 2011;21:2901-05.

52. Pan J, Zhang Q, Xiao X, Cheng Y, Qi Y. Design of nanostructured heterogeneous solid ionic coatings through a multiscale defect model. ACS Appl Mater Interfaces 2016;8:5687-93.

53. Lorger S, Usiskin R, Maier J. Transport and charge carrier chemistry in lithium oxide. J Electrochem Soc 2019;166:A2215-20.

54. Muralidharan A, Chaudhari MI, Pratt LR, Rempe SB. Molecular dynamics of lithium ion transport in a model solid electrolyte interphase. Sci Rep 2018;8:10736.

55. Li W, Wu G, Araújo CM, et al. Li+ ion conductivity and diffusion mechanism in a-Li3N and b-Li3N. Energy Environ Sci 2010;3:1524-30.

56. Liu Y, Hu R, Zhang D, et al. Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv Mater 2021;33:2004711.

57. Chen C, Liang Q, Wang G, Liu D, Xiong X. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv Funct Mater 2021;32:2107249.

58. Miyakawa S, Matsuda S, Tanibata N, et al. Computational studies on defect chemistry and Li-ion conductivity of spinel-type LiAl5O8 as coating material for Li-metal electrode. Sci Rep 2022;12:16672.

59. Wang R, Han H, Liu F, et al. Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochim Acta 2022;406:139840.

60. Luo Z, Li S, Yang L, et al. Interfacially redistributed charge for robust lithium metal anode. Nano Energy 2021;87:106212.

61. Hu A, Chen W, Du X, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci 2021;14:4115-24.

62. Wang Z, Wang Y, Zhang Z, et al. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv Funct Mater 2020;30:2002414.

63. Chen H, Pei A, Lin D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy Mater 2019;9:1900858.

64. Hu J, Chen K, Li C. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl Mater Interfaces 2018;10:34322-31.

65. Wang Y, Liu F, Fan G, et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J Am Chem Soc 2021;143:2829-37.

66. Li J, Dudney NJ, Nanda J, Liang C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl Mater Interfaces 2014;6:10083-88.

67. Han SA, Qutaish H, Park MS, Moon J, Kim JH. Strategic approaches to the dendritic growth and interfacial reaction of lithium metal anode. Chem Asian J 2021;16:4010-17.

68. Yan C, Yao YX, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew Chem Int Ed 2018;57:14055-59.

69. Liu YY, Lin DC, Li YZ, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat Commun 2018;9:3656.

70. Brown ZL, Heiskanen S, Lucht BL. Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode. J Electrochem Soc 2019;166:A2523-27.

71. Guo Y, Cheng J, Zeng J, et al. Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl Energy Mater 2022;5:2853-61.

72. Camacho-Forero LE, Balbuena PB. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J Power Sources 2018;396:782-90.

73. Lorger S, Narita K, Usiskin R, Maier J. Enhanced ion transport in Li2O and Li2S films. Chem Commun 2021;57:6503-06.

74. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc 2009;156:A694-A702.

75. Li W, Yao H, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 2015;6:7436.

76. Sun Y, Zhao C, Adair KR, et al. Regulated lithium plating and stripping by a nano-scale gradient inorganic organic coating for stable lithium metal anodes. Energy Environ Sci 2021;14:4085-94.

77. Yan C, Cheng X, Tian Y, et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv Mater 2018;30:1707629.

78. Yuan S, Weng S, Wang F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 2021;83:105847.

79. Frenck L, Sethi GK, Maslyn JA, Balsara NP. Factors that control the formation of dendrites and other morphologies on lithium metal anodes. Front Energy Res 2019;7:115.

80. Liu Y, Xu X, Kapitanova OO, et al. Electro-Chemo-Mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv Energy Mater 2022;12:2103589.

81. Han SA, Qutaish H, Lee JW, Park MS, Kim JH. Metal-organic framework derived porous structures towards lithium rechargeable batteries. EcoMat 2022;5:e12283.

82. Zheng F, Kotobuki M, Song S, Lai MO, Lu L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 2018;389:198-213.

83. Lee D, Park KH, Kim SY, et al. Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries. J Mater Chem A 2021;9:17311-16.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/