fig3

Advances in lithium-ion battery materials for ceramic fuel cells

Figure 3. An overview of LIB and CFC band structures from semiconductor electrochemical aspects. (A) Schematic of working principle and energy diagram at LIB/CFC electrode (semiconductor) interface with the electrolyte, in which the Fermi levels are in equilibrium positions. Copyright from Ref.[22]. (B) Schematic of working principle and energy diagram for a CFC without an electrolyte, Copyright from Ref.[22]. (C) Relative energy positions of LiCoO2 cathode with respect to HOMO and LUMO of liquid electrolyte in a LIB. Copyright from Ref.[11]. (D) Energy level diagram of LiCoO2/DEC interface established from low-temperature adsorption of DEC (alkyl carbonate solvent) electrolyte. Copyright from Ref.[24]. (E) Band bending and alignment occurring in CeO2 electrolyte CFC, resulting in a double-layer device due to P/N junction formed under H2/air fuel cell conditions. Copyright from Ref.[25]. (F) Band bending and alignment situation and device working principle for semiconductor cubic silicon carbide (3C-SiC)/ZnO electrolyte in a CFC. Copyright from Ref.[26].

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/