REFERENCES

1. Cao X, Zhang L, Huang K, Zhang B, Wu J, Huang Y. Strained carbon steel as a highly efficient catalyst for seawater electrolysis. Energy Mater 2022;2:200010.

2. Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy Mater 2022;1:100002.

3. Stambouli A, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 2002;6:433-55.

4. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2022;1:100003.

5. Maleki H, Howard JN. Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge. J Power Sources 2004;137:117-27.

6. Curi M, Ferraz H, Furtado J, Secchi A. Dispersant effects on YSZ electrolyte characteristics for solid oxide fuel cells. Ceram Int 2015;41:6141-8.

7. Raza R, Zhu B, Rafique A, Naqvi MR, Lund P. Functional ceria-based nanocomposites for advanced low-temperature (300-600 °C) solid oxide fuel cell: a comprehensive review. Mater Today Energy 2020;15:100373.

8. Sebastian L, Jayashree RS, Gopalakrishnan J. Probing the mobility of lithium in LISICON: Li+/H+ exchange studies in Li2 ZnGeO4 and Li2+2x Zn1-xGeO4. J Mater Chem 2003;13:1400-5.

9. Wei T, Zhang LA, Chen Y, Yang P, Liu M. Promising proton conductor for intermediate-temperature fuel cells: Li13.9Sr0.1Zn(GeO4)4. Chem Mater 2017;29:1490-5.

10. Zhu B, Lund PD, Raza R, et al. Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv Energy Mater 2015;5:1401895.

11. Ensling D, Cherkashinin G, Schmid S, Bhuvaneswari S, Thissen A, Jaegermann W. Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical li deintercalation. Chem Mater 2014;26:3948-56.

12. Manthiram A, Goodenough JB. Lithium-based polyanion oxide cathodes. Nat Energy 2021;6:844-5.

13. Xia T, Zhang W, Murowchick J, Liu G, Chen X. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett 2013;13:5289-96.

14. Ruan J, Sun H, Song Y, et al. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater 2022;1:100018.

15. Guo Z, Zhang D, Qiu H, et al. Improved cycle stability and rate capability of graphene oxide wrapped tavorite LiFeSO4 F as cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 2015;7:13972-9.

16. Wang L, Xie R, Chen B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat Commun 2020;11:5889.

17. Fan L, Su P. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells. J Power Sources 2016;306:369-77.

18. Jing Y, Qin H, Liu Q, Singh M, Zhu B. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell. J Nanosci Nanotechnol 2012;12:5102-5.

19. Zhao Y, He Y, Fan L, et al. Synthesis of hierarchically porous LiNiCuZn-oxide and its electrochemical performance for low-temperature fuel cells. Int J Hydrogen Energy 2014;39:12317-22.

20. Liu X, Dong W, Tong Y, et al. Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2-δ: improving cell performance via on-line reaction. Electrochim Acta 2019;295:325-32.

21. Mushtaq N, Lu Y, Xia C, et al. Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3-δ perovskite oxide for enhanced oxygen reduction catalytic performance. J Catal 2021;395:168-77.

22. Zhu B, Fan L, Mushtaq N, et al. Semiconductor electrochemistry for clean energy conversion and storage. Electrochem Energy Rev 2021;4:757-92.

23. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

24. Becker D, Cherkashinin G, Hausbrand R, Jaegermann W. Adsorption of diethyl carbonate on LiCoO2 thin films: formation of the electrochemical interface. J Phys Chem C 2014;118:962-7.

25. Wang B, Zhu B, Yun S, et al. Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells. NPG Asia Mater 2019;11.

26. Xing Y, Hu E, Wang F, et al. Cubic silicon carbide/zinc oxide heterostructure fuel cells. Appl Phys Lett 2020;117:162105.

27. Lu Y, Zhu B, Shi J, Yun S. Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Mater 2022;1:100007.

28. Gao B, Jalem R, Ma Y, Tateyama Y. Li+ Transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme. Chem Mater 2020;32:85-96.

29. Rauf S, Zhu B, Shah M, et al. Low-temperature solid oxide fuel cells based on Tm-doped SrCeO2-δ semiconductor electrolytes. Mater Today Energy 2021;20:100661.

30. Ni J, Sun M, Li L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv Mater 2019;31:e1902603.

31. Wang F, Hu E, Wu H, et al. Surface-engineered homostructure for enhancing proton transport. Small Methods 2022;6:e2100901.

32. Xing Y, Wu Y, Li L, et al. Proton shuttles in CeO2/CeO2-δ core-shell structure. ACS Energy Lett 2019;4:2601-7.

33. Wang Y, Wu Y, Wang Z, Chen L, Li H, Wu F. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. J Mater Chem A 2022;10:4517-32.

34. Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem Mater 2010;22:691-714.

35. Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 2004;7:A30.

36. Gibot P, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 2008;7:741-47.

37. Zhou W, Shao Z. Fuel cells: hydrogen induced insulation. Nat Energy 2016;1:16078.

38. Yoo P, Liao P. Metal-to-insulator transition in SmNiO3 induced by chemical doping: a first principles study. Mol Syst Des Eng 2018;3:264-74.

39. Zhu B, Raza R, Abbas G, Singh M. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv Funct Mater 2011;21:2465-9.

40. Shao K, Li F, Zhang G, Zhang Q, Maliutina K, Fan L. Approaching durable single-layer fuel cells: promotion of electroactivity and charge separation via nanoalloy redox exsolution. ACS Appl Mater Interfaces 2019;11:27924-33.

41. Fan L, Zhang H, Chen M, et al. Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. Int J Hydrogen Energy 2013;38:11398-405.

42. Zhu B, Fan L, Zhao Y, Tan W, Xiong D, Wang H. Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx for single-component fuel cell. RSC Adv 2014;4:9920.

43. Hu H, Lin Q, Zhu Z, Zhu B, Liu X. Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2-δ-Li0.3Ni0.6Cu0.07Sr0.03O2-δ layer. J Power Sources 2014;248:577-81.

44. Hu H, Lin Q, Zhu Z, Liu X, Zhu B. Time-dependent performance change of single layer fuel cell with Li0.4Mg0.3Zn0.3O/Ce0.8Sm0.2O2-δ composite. Int J Hydrogen Energy 2014;39:10718-23.

45. Zhu B, Fan L, Deng H, et al. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells. J Power Sources 2016;316:37-43.

46. Hu H, Lin Q, Muhammad A, Zhu B. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell. J Power Sources 2015;286:388-93.

47. Ganesan P, Colon H, Haran B, White R, Popov BN. Study of cobalt-doped lithium-nickel oxides as cathodes for MCFC. J Power Sources 2002;111:109-20.

48. Zhang W, Cai Y, Wang B, et al. The fuel cells studies from ionic electrolyte Ce0.8Sm0.05Ca0.15O2-δ to the mixture layers with semiconductor Ni0.8Co0.15Al0.05LiO2-δ. Int J Hydrogen Energy 2016;41:18761-8.

49. Yuan K, Zhu J, Dong W, et al. Applying low-pressure plasma spray (LPPS) for coatings in low-temperature SOFC. Int J Hydrogen Energy 2017;42:22243-9.

50. Chen G, Sun W, Luo Y, et al. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells. Int J Hydrogen Energy 2018;43:417-25.

51. Wang K, Zheng D, Cai H, et al. Rational design of favourite lithium-ion cathode materials as electrodes for symmetrical solid oxide fuel cells. Ceram Int 2021;47:30536-45.

52. Liu Y, Xia C, Wang B, Tang Y. Layered LiCoO2-LiFeO2 heterostructure composite for semiconductor-based fuel cells. Nanomaterials 2021;11:1224.

53. Raza R, Gao Z, Singh T, Singh G, Li S, Zhu B. LiAlO2-LiNaCO3 composite electrolyte for solid oxide fuel cells. J Nanosci Nanotechnol 2011;11:5402-7.

54. Zhang W, Cai Y, Wang B, et al. Mixed ionic-electronic conductor membrane based fuel cells by incorporating semiconductor Ni0.8Co0.15Al0.05LiO2-δ into the Ce0.8Sm0.2O2-δ-Na2CO3 electrolyte. Int J Hydrogen Energy 2016;41:15346-53.

55. Lan R, Tao S. High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions. Chem A Eur J 2015;21:1350-8.

56. Zhu J, Deng H, Zhu B, et al. Polymer-assistant ceramic nanocomposite materials for advanced fuel cell technologies. Ceram Int 2017;43:5484-9.

57. Fan L, Ma Y, Wang X, Singh M, Zhu B. Understanding the electrochemical mechanism of the core-shell ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell. J Mater Chem A 2014;2:5399.

58. Tu Z, Tian Y, Liu M, et al. Remarkable ionic conductivity in a LZO-SDC composite for low-temperature solid oxide fuel cells. Nanomaterials 2021;11:2277.

59. Paydar S, Peng J, Huang L, et al. Performance analysis of LiAl0.5Co0.5O2 nanosheets for intermediate-temperature fuel cells. Int J Hydrogen Energy 2021;46:26478-88.

60. Zhu B, Fan L, He Y, Zhao Y, Wang H. A commercial lithium battery LiMn-oxide for fuel cell applications. Mater Lett 2014;126:85-8.

61. Pan C, Tan W, Lu J, Zhu B. Microstructure and catalytic activity of Li0.15Ni0.25Cu0.3Zn0.3O2-δ-Ce0.8Sm0.2O1.9-carbonate nanocomposite materials functioning as single component fuel cell. Int J Hydrogen Energy 2014;39:19140-7.

62. Lan R, Tao S. Novel proton conductors in the layered oxide material LixlAl0.5Co0.5O2. Adv Energy Mater 2014;4:1301683.

63. Gao J, Xu S, Akbar M, et al. Single layer low-temperature SOFC based on Ce0.8Sm0.2O2-δ-La0.25Sr0.75Ti1O3-δ-Ni0.8Co0.15Al0.05LiO2-δ composite material. Int J Hydrogen Energy 2021;46:9775-81.

64. Lu Y, Akbar M, Li J, Ma L, Wang B, Xia C. A p-n-n heterostructure composite for low-temperature solid oxide fuel cells. J Alloys Compd 2022;890:161765.

65. Tayyab Z, Rauf S, Xia C, et al. Advanced LT-SOFC based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2-Sm0.2Ce0.8O2-δ heterostructure for fast ionic transport. ACS Appl Energy Mater 2021;4:8922-32.

66. Lu Y, Akbar M, Xia C, et al. Catalytic membrane with high ion-electron conduction made of strongly correlated perovskite LaNiO3 and Ce0.8Sm0.2O2-δ for fuel cells. J Catal 2020;386:117-25.

67. Akbar M, Alvi F, Shakir MI, et al. Effect of sintering temperature on properties of LiNiCuZn-Oxide: a potential anode for solid oxide fuel cell. Mater Res Express 2019;6:105505.

68. Zhang J, Zhang W, Xu R, Wang X, Yang X, Wu Y. Electrochemical properties and catalyst functions of natural CuFe oxide mineral-LZSDC composite electrolyte. Int J Hydrogen Energy 2017;42:22185-91.

69. Ganesh KS, Wang B, Kim J, Zhu B. Ionic conducting properties and fuel cell performance developed by band structures. J Phys Chem C 2019;123:8569-77.

70. Xia C, Afzal M, Wang B, et al. Mixed-conductive membrane composed of natural hematite and Ni0.8Co0.15Al0.05LiO2-δ for electrolyte layer-free fuel cell. Adv Mater Lett 2017;8:114-21.

71. Xia C, Qiao Z, Shen L, et al. Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO. Int J Hydrogen Energy 2018;43:12825-34.

72. Cai Y, Chen Y, Akbar M, et al. A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2-delta-SrTiO3 for low-temperature solid oxide fuel cells. Nanomicro Lett 2021;13:46.

73. Liu X, Dong W, Xia C, et al. Study on charge transportation in the layer-structured oxide composite of SOFCs. Int J Hydrogen Energy 2018;43:12773-81.

74. He Y, Chen G, Zhang X, et al. Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode. ACS Appl Energy Mater 2020;3:4134-8.

75. Fan Q, Yan S, Wang H. Nanoscale redox reaction unlocking the next-generation low temperature fuel cell. Energy Mater 2022;2:200002.

76. Yang D, Chen G, Liu H, et al. Electrochemical performance of a Ni0.8Co0.15Al0.05LiO2 cathode for a low temperature solid oxide fuel cell. Int J Hydrogen Energy 2021;46:10438-47.

77. Wei L, Dong W, Yuan M, et al. Interface engineering towards low temperature in-situ densification of SOFC. Int J Hydrogen Energy 2020;45:10030-8.

78. Peng X, Wang C, Liu Y, et al. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. Energy Mater 2022;1:100011.

79. Bi Z, Guo X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater 2022;2:200011.

80. Su H, Jiang Z, Liu Y, et al. Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Mater 2022;2:200005.

81. Bashir T, Ismail SA, Song Y, et al. A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater 2022;1:100019.

82. Xia S, Wu X, Zhang Z, Cui Y, Liu W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019;5:753-85.

83. Dermenci KB, Çekiç E, Turan S. Al stabilized Li7La3Zr2O12 solid electrolytes for all-solid state Li-ion batteries. Int J Hydrogen Energy 2016;41:9860-7.

84. Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M. A wide-ranging review on Nasicon type materials. J Mater Sci 2011;46:2821-37.

85. Yadav P, Beheshti SH, Kathribail AR, Ivanchenko P, Mierlo JV, Berecibar M. Improved performance of solid polymer electrolyte for lithium-metal batteries via hot press rolling. Polymers 2022;14:363.

86. Castillo J, Qiao L, Santiago A, et al. Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2022;2:200003.

87. Uitz M, Epp V, Bottke P, Wilkening M. Ion dynamics in solid electrolytes for lithium batteries. J Electroceram 2017;38:142-56.

88. Wang L, Światowska J, Dai S, et al. Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries. Mater Today Energy 2019;11:46-60.

89. Fleischmann S, Kamboj I, Augustyn V. Nanostructured transition metal oxides for electrochemical energy storage. In Nanda J, Augustyn V, editors, Transition Metal Oxides for Electrochemical Energy Storage. 2022. pp. 183-212.

90. Williams QL, Adepoju AA, Zaab S, Doumbia M, Alqahtani Y, Adebayo V. Application of carbon nanomaterials on the performance of Li-ion batteries. In Misra P, editor, Spectroscopy and Characterization of Nanomaterials and Novel Materials. 2022. pp. 361-414.

91. Chernova NA, Ma M, Xiao J, Whittingham MS, Breger J, Grey CP. Layered LixNiyMnyCo1-2yO2 cathodes for Lithium ion batteries: understanding local structure via magnetic properties. Chem Mater 2007;19:4682-93.

92. Zhang X, Liu G, Zhou K, et al. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine. Energy Mater 2021;1:100005.

93. Yang Z, Zheng C, Wei Z, et al. Multi-dimensional correlation of layered Li-rich Mn-based cathode materials. Energy Mater 2022;2:200006.

94. Du Z, Wood DL, Daniel C, Kalnaus S, Li J. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J Appl Electrochem 2017;47:405-15.

95. Kim H, Krishna T, Zeb K, et al. A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 2020;9:1161.

96. Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem 2011;21:17147.

97. Li J, Yao W, Martin S, Vaknin D. Lithium ion conductivity in single crystal LiFePO4. Solid State Ionics 2008;179:2016-9.

98. Shao Y, Jin Z, Li J, Meng Y, Huang X. Evaluation of the electrochemical and expansion performances of the Sn-Si/graphite composite electrode for the industrial use. Energy Mater 2022;2:200004.

99. Wang Y, Xu H, Zhong J, et al. Hierarchical Ni- and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes. Energy Mater 2022;1:100012.

100. Xiao Y, Xu R, Xu L, Ding J, Huang J. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater 2022;1:100013.

101. Zhang L, Chen Y. Electrolyte solvation structure as a stabilization mechanism for electrodes. Energy Mater 2022;1:100004.

102. Huang T, Long M, Xiao J, Liu H, Wang G. Recent research on emerging organic electrode materials for energy storage. Energy Mater 2022;1:100009.

103. Li C, Zhang X, Zhu Y, et al. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater 2022;1:100017.

104. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.

105. Thangadurai V, Kaack H, Weppner WJF. Novel fast lithium ion conduction in garnet-type Li5La3M2O12(M:Nb,Ta). ChemInform 2003;34.

106. Kataoka K, Akimoto J. High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12. ChemElectroChem 2018;5:2551-7.

107. Jasinski G, Jasinski P, Chachulski B, Nowakowski A. Lisicon solid electrolyte electrocatalytic gas sensor. J Eur Ceram Soc 2005;25:2969-72.

108. Ma Y, Teo JH, Kitsche D, et al. Cycling performance and limitations of LiNiO2 in solid-state batteries. ACS Energy Lett 2021;6:3020-8.

109. Tukamoto H, West AR. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc 1997;144:3164-8.

110. Xiao P, Lv T, Chen X, Chang C. LiNi0.8Co0.15Al0.05O2: enhanced electrochemical performance from reduced cationic disordering in Li slab. Sci Rep 2017;7:1408.

111. Liu Y, Liu M. Reproduction of Li battery LiNixMnyCo1-x-yO2 positive electrode material from the recycling of waste battery. Int J Hydrogen Energy 2017;42:18189-95.

112. Orikasa Y, Gogyo Y, Yamashige H, et al. Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution. Sci Rep 2016;6:26382.

113. Choi D, Wang D, Bae IT, et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 2010;10:2799-805.

114. Rao B, Padmaraj O, Narsimulu D, Venkateswarlu M, Satyanarayana N. A.C conductivity and dielectric properties of spinel LiMn2O4 nanorods. Ceram Int 2015;41:14070-7.

115. Shah MY, Lu Y, Mushtaq N, et al. ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells. Energy Mater 2022;2:200031.

116. Chen G, Liu H, He Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte. J Mater Chem A 2019;7:9638-45.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/