REFERENCES

1. bp statistical review of world energy 2020. Available from: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf [Last accessed on 27 March 2023].

2. bp statistical review of world energy 2021. Available from: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf [Last accessed on 27 March 2023].

3. Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2022;51:188-236.

4. Zhang Z, Liu J, Curcio A, et al. Atomically dispersed materials for rechargeable batteries. Nano Energy 2020;76:105085.

5. Venkateswara Raju C, Hwan Cho C, Mohana Rani G, et al. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord Chem Rev 2023;476:214920.

6. Dong F, Wu M, Chen Z, et al. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nanomicro Lett 2021;14:36.

7. Li W, Guo Z, Yang J, et al. Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochem Energy Rev 2022;5:9.

8. Yang X, Priest C, Hou Y, Wu G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. SusMat 2022;2:569-90.

9. Wang J, Liu W, Luo G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci 2018;11:3375-9.

10. He T, Chen Y, Liu Q, et al. Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries. Angew Chem Int Ed 2022;61:e202201007.

11. Xiao M, Zhu J, Li G, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew Chem Int Ed 2019;58:9640-5.

12. Zhang N, Zhou T, Chen M, et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ Sci 2020;13:111-8.

13. Liu D, Li X, Chen S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy 2019;4:512-8.

14. Mu X, Gu X, Dai S, et al. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ Sci 2022;15:4048-57.

15. Li BQ, Zhao CX, Liu JN, Zhang Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv Mater 2019;31:e1808173.

16. Pan F, Li B, Sarnello E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal 2020;10:10803-11.

17. Zang W, Yang T, Zou H, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal 2019;9:10166-73.

18. Gokana MR, Wu C, Motora KG, Qi JY, Yen W. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J Power Sources 2022;536:231524.

19. Chen S, Luo T, Li X, et al. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J Am Chem Soc 2022;144:14505-16.

20. Du Z, Chen X, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc 2019;141:3977-85.

21. Wang P, Ren Y, Wang R, et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat Commun 2020;11:1576.

22. Xia Q, Zhai Y, Zhao L, et al. Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy Mater 2022;2:200015.

23. Hu X, Luo G, Zhao Q, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J Am Chem Soc 2020;142:16776-86.

24. Li X, Han G, Lou S, et al. Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy 2022;93:106810.

25. Yang T, Qian T, Sun Y, Zhong J, Rosei F, Yan C. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett 2019;19:7827-35.

26. Lu C, Fang R, Chen X. Single-atom catalytic materials for advanced battery systems. Adv Mater 2020;32:e1906548.

27. Yang X, Zheng Y, Yang J, et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal 2017;7:139-45.

28. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. ACC Chem Res 2013;46:1740-8.

29. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chemical synthesis of single atomic site catalysts. Chem Rev 2020;120:11900-55.

30. Boucher MB, Zugic B, Cladaras G, et al. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys Chem Chem Phys 2013;15:12187-96.

31. Lou Y, Liu J. CO oxidation on metal oxide supported single Pt atoms: the role of the support. Ind Eng Chem Res 2017;56:6916-25.

32. Zhang J, Liu J, Xi L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J Am Chem Soc 2018;140:3876-9.

33. Zhao D, Chen Z, Yang W, et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J Am Chem Soc 2019;141:4086-93.

34. Zhang B, Asakura H, Zhang J, Zhang J, De S, Yan N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed 2016;55:8319-23.

35. Zhang B, Asakura H, Yan N. Atomically dispersed rhodium on self-assembled phosphotungstic acid: structural features and catalytic CO oxidation properties. Ind Eng Chem Res 2017;56:3578-87.

36. Sakamoto R, Toyoda R, Jingyan G, et al. Coordination chemistry for innovative carbon-related materials. Coord Chem Rev 2022;466:214577.

37. Umapathi R, Ghoreishian SM, Sonwal S, Rani GM, Huh YS. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022;453:214305.

38. Bakandritsos A, Kadam RG, Kumar P, et al. Mixed-valence single-atom catalyst derived from functionalized graphene. Adv Mater 2019;31:e1900323.

39. Liu Z, Li S, Yang J, et al. Ultrafast construction of oxygen-containing scaffold over graphite for trapping Ni2+ into single atom catalysts. ACS Nano 2020;14:11662-9.

40. Han G, Zhang X, Liu W, et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat Commun 2021;12:6335.

41. Li J, Jiang YF, Wang Q, et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat Commun 2021;12:6806.

42. Yan H, Zhao X, Guo N, et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat Commun 2018;9:3197.

43. Mehmood A, Pampel J, Ali G, Ha HY, Ruiz-zepeda F, Fellinger T. Facile metal coordination of active site imprinted nitrogen doped carbons for the conservative preparation of non-noble metal oxygen reduction electrocatalysts. Adv Energy Mater 2018;8:1701771.

44. Hai X, Zhao X, Guo N, et al. Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction. ACS Catal 2020;10:5862-70.

45. Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew Chem Int Ed 2018;57:1944-8.

46. Pan Y, Chen Y, Wu K, et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat Commun 2019;10:4290.

47. Zhai P, Wang T, Yang W, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater 2019;9:1804019.

48. Ha M, Kim DY, Umer M, Gladkikh V, Myung CW, Kim KS. Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ Sci 2021;14:3455-68.

49. Li J, Zhang H, Samarakoon W, et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew Chem Int Ed 2019;58:18971-80.

50. Chen K, Liu K, An P, et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun 2020;11:4173.

51. Li Z, Zhuang Z, Lv F, et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3D electron delocalization matters. Adv Mater 2018;30:e1803220.

52. Cui X, Xiao J, Wu Y, et al. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew Chem Int Ed 2016;55:6708-12.

53. Marshall-Roth T, Libretto NJ, Wrobel AT, et al. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat Commun 2020;11:5283.

54. Sa YJ, Seo DJ, Woo J, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J Am Chem Soc 2016;138:15046-56.

55. Wang Q, Ina T, Chen WT, et al. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci Bull 2020;65:1743-51.

56. Jahnke H, Schönborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells. In: Schäfer FP, Gerischer H, Willig F, et al., editors. Physical and chemical applications of dyestuffs. Berlin/Heidelberg: Springer-Verlag; 1976. pp. 133-81.

57. Gupta S, Tryk D, Bae I, Aldred W, Yeager E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 1989;19:19-27.

58. Li L, Wen Y, Han G, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chem Eng J 2022;437:135320.

59. Sun Y, Silvioli L, Sahraie NR, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J Am Chem Soc 2019;141:12372-81.

60. Ding T, Liu X, Tao Z, et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J Am Chem Soc 2021;143:11317-24.

61. Hai X, Xi S, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol 2022;17:174-81.

62. Gao J, Yang HB, Huang X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020;6:658-74.

63. Zhang N, Zhou T, Ge J, et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter 2020;3:509-21.

64. Xiao M, Gao L, Wang Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J Am Chem Soc 2019;141:19800-6.

65. Li X, Huang X, Xi S, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J Am Chem Soc 2018;140:12469-75.

66. Jiao L, Wan G, Zhang R, Zhou H, Yu S, Jiang H. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew Chem Int Ed 2018;130:8661-5.

67. Chen W, Pei J, He CT, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater 2018;30:e1800396.

68. Yang Q, Xu W, Gong S, et al. Atomically dispersed lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat Commun 2020;11:5478.

69. Al-Zoubi T, Zhou Y, Yin X, et al. Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal. J Am Chem Soc 2020;142:5477-81.

70. Yang Y, Mao K, Gao S, et al. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv Mater 2018;30:e1801732.

71. Zhang E, Wang T, Yu K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J Am Chem Soc 2019;141:16569-73.

72. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. ACC Chem Res 2010;43:58-67.

73. Chen M, Li X, Yang F, et al. Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: mechanistic understanding of activity and stability improvements. ACS Catal 2020;10:10523-34.

74. Li Z, Chen Y, Ji S, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat Chem 2020;12:764-72.

75. Xie X, He C, Li B, et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat Catal 2020;3:1044-54.

76. Wang J, Han G, Wang L, et al. ZIF-8 with ferrocene encapsulated: a promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 2018;14:e1704282.

77. Ji S, Chen Y, Zhao S, et al. Atomically dispersed ruthenium species inside metal-organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew Chem Int Ed 2019;58:4271-5.

78. Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J Am Chem Soc 2018;140:11594-8.

79. Wan X, Liu X, Li Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal 2019;2:259-68.

80. Xiong Y, Dong J, Huang ZQ, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol 2020;15:390-7.

81. Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 2017;129:7041-5.

82. Wang H, Grabstanowicz LR, Barkholtz HM, et al. Impacts of imidazolate ligand on performance of zeolitic-imidazolate framework-derived oxygen reduction catalysts. ACS Energy Lett 2019;4:2500-7.

83. Xiao M, Zhu J, Ma L, et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal 2018;8:2824-32.

84. Li J, Chen M, Cullen DA, et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 2018;1:935-45.

85. Zhu M, Zhao C, Liu X, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal 2021;11:3923-9.

86. Liu Q, Li Y, Zheng L, et al. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv Energy Mater 2020;10:2000689.

87. Liu Q, Liu X, Zheng L, Shui J. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew Chem Int Ed 2018;57:1204-8.

88. Ye W, Chen S, Lin Y, et al. Precisely tuning the number of fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019;5:2865-78.

89. Ye Y, Cai F, Li H, et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 2017;38:281-9.

90. Liu M, Li N, Cao S, et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv Mater 2022;34:e2107421.

91. Wan J, Zhao Z, Shang H, et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J Am Chem Soc 2020;142:8431-9.

92. Liu J, Kong X, Zheng L, Guo X, Liu X, Shui J. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020;14:1093-101.

93. Wang J, Huang Z, Liu W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 2017;139:17281-4.

94. Xiao M, Chen Y, Zhu J, et al. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J Am Chem Soc 2019;141:17763-70.

95. Ren W, Tan X, Yang W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew Chem Int Ed 2019;58:6972-6.

96. Wu J, Zhang Q, Wang J, Huang X, Bai H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ Sci 2018;11:1280-6.

97. An H, Zhang R, Li Z, Zhou L, Shao M, Wei M. Highly efficient metal-free electrocatalysts toward oxygen reduction derived from carbon nanotubes@polypyrrole core-shell hybrids. J Mater Chem A 2016;4:18008-14.

98. Li J, Yang Z, Tang D, et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater 2018;10:e461-e461.

99. Li H, Wen Y, Jiang M, et al. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv Funct Mater 2021;31:2011289.

100. Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 2021;4:615-22.

101. Weng CC, Ren JT, Zhao H, Hu ZP, Yuan ZY. Iron-salt thermally emitted strategy to prepare graphene-like carbon nanosheets with trapped Fe species for an efficient electrocatalytic oxygen reduction reaction in the all-pH range. ACS Appl Mater Interfaces 2019;11:27823-32.

102. Zhang M, Wang YG, Chen W, et al. Metal (Hydr)oxides@polymer core-shell strategy to metal single-atom materials. J Am Chem Soc 2017;139:10976-9.

103. Han X, Ling X, Yu D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv Mater 2019;31:e1905622.

104. Zhou Y, Yu Y, Ma D, et al. Atomic Fe dispersed hierarchical mesoporous Fe-N-C nanostructures for an efficient oxygen reduction reaction. ACS Catal 2021;11:74-81.

105. Zhang Z, Zhao X, Xi S, et al. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting. Adv Energy Mater 2020;10:2002896.

106. Qu Y, Wang L, Li Z, et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv Mater 2019;31:e1904496.

107. Zhao Y, Liang J, Wang C, Ma J, Wallace GG. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv Energy Mater 2018;8:1702524.

108. Zhang H, Zhou W, Chen T, Guan BY, Li Z, Lou XW. A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ Sci 2018;11:1980-4.

109. Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1,000 h. Adv Mater 2022;34:e2105410.

110. Cheng C, Li S, Xia Y, et al. Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries. Adv Mater 2018:e1802669.

111. Ji D, Fan L, Li L, et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv Mater 2019;31:e1808267.

112. Cheng Q, Yang L, Zou L, et al. Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction. ACS Catal 2017;7:6864-71.

113. Zhang Z, Sun J, Wang F, Dai L. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew Chem Int Ed 2018;130:9176-81.

114. Zhang Z, Gao X, Dou M, Ji J, Wang F. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 2017;13:1604290.

115. Wang C, Chen W, Xia K, Xie N, Wang H, Zhang Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts. Small 2019;15:e1804966.

116. Yang G, Zhu J, Yuan P, et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat Commun 2021;12:1734.

117. Zeng Z, Gan LY, Bin Yang H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun 2021;12:4088.

118. Yang HB, Hung S, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy 2018;3:140-7.

119. Zhu C, Fu S, Song J, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017;13:1603407.

120. Chen Y, Li Z, Zhu Y, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv Mater 2019;31:e1806312.

121. Zhang X, Zhang S, Yang Y, et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv Mater 2020;32:e1906905.

122. Li X, Bi W, Chen M, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc 2017;139:14889-92.

123. Lu Z, Wang B, Hu Y, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew Chem Int Ed 2019;58:2622-6.

124. Chen W, Pei J, He CT, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed 2017;56:16086-90.

125. Zhu Y, Cao T, Cao C, et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal 2018;8:10004-11.

126. Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew Chem Int Ed 2019;58:1163-7.

127. Kiciński W, Dyjak S. Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects. Carbon 2020;168:748-845.

128. Tang C, Chen L, Li H, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J Am Chem Soc 2021;143:7819-27.

129. Yang H, Shang L, Zhang Q, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun 2019;10:4585.

130. Xie X, Liu J, Li T, Song Y, Wang F. Post-formation copper-nitrogen species on carbon black: their chemical structures and active sites for oxygen reduction reaction. Chem Eur J 2018;24:9968-75.

131. Wang Y, Shi R, Shang L, et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew Chem Int Ed 2020;59:13057-62.

132. Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 2010;114:832-42.

133. Gao C, Chen S, Wang Y, et al. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv Mater 2018;30:e1704624.

134. Liang S, Zhu C, Zhang N, et al. A novel single-atom electrocatalyst Ti1/rGO for efficient cathodic reduction in hybrid photovoltaics. Adv Mater 2020;32:e2000478.

135. Fei H, Dong J, Wan C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater 2018;30:e1802146.

136. Wan G, Yang C, Zhao W, et al. Anion-regulated selective generation of cobalt sites in carbon: toward superior bifunctional electrocatalysis. Adv Mater 2017;29:1703436.

137. Guo L, Hwang S, Li B, et al. Promoting atomically dispersed mnn4 sites via sulfur doping for oxygen reduction: unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021;15:6886-99.

138. Sun W, Du L, Tan Q, et al. Engineering of nitrogen coordinated single cobalt atom moieties for oxygen electroreduction. ACS Appl Mater Interfaces 2019;11:41258-66.

139. Qu Y, Li Z, Chen W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 2018;1:781-6.

140. Qu Y, Chen B, Li Z, et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J Am Chem Soc 2019;141:4505-9.

141. Jiao L, Li J, Richard LL, et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat Mater 2021;20:1385-91.

142. Wu M, Wang K, Yi M, Tong Y, Wang Y, Song S. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species. ACS Catal 2017;7:6082-8.

143. Zhang C, Sha J, Fei H, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017;11:6930-41.

144. Bai L, Duan Z, Wen X, Si R, Guan J. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl Catal B Environ 2019;257:117930.

145. Fei H, Dong J, Arellano-Jiménez MJ, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 2015;6:8668.

146. Zhang C, Yang S, Wu J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv Energy Mater 2018;8:1703487.

147. Han G, Zheng Y, Zhang X, et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 2019;66:104088.

148. Li Y, Wang S, Wang XS, et al. Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction. J Am Chem Soc 2020;142:19259-67.

149. Banhart F. Interactions between metals and carbon nanotubes: at the interface between old and new materials. Nanoscale 2009;1:201-13.

150. Banhart F, Charlier J, Ajayan PM. Dynamic behavior of nickel atoms in graphitic networks. Phys Rev Lett 2000;84:686-9.

151. Liu J, Cao C, Liu X, et al. Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings. Angew Chem Int Ed 2021;60:15248-53.

152. Wei S, Li A, Liu JC, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat Nanotechnol 2018;13:856-61.

153. Yang J, Qiu Z, Zhao C, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew Chem Int Ed 2018;57:14095-100.

154. Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 2015;54:14031-5.

155. Li J, Jiao L, Wegener E, et al. Evolution pathway from iron compounds to Fe1(II)-N4 sites through gas-phase iron during pyrolysis. J Am Chem Soc 2020;142:1417-23.

156. Yang Z, Chen B, Chen W, et al. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat Commun 2019;10:3734.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/