REFERENCES

1. Wei YS, Zhang M, Zou R, Xu Q. Metal-organic framework-based catalysts with single metal sites. Chem Rev 2020;120:12089-174.

2. Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev 2020;120:12175-216.

3. Ji Y, Liu S, Song S, et al. Negatively charged single-atom Pt catalyst shows superior SO2 tolerance in NOx reduction by CO. ACS Catal 2023;13:224-36.

4. Yang M, Zhou K, Wang C, et al. Iridium single-atom catalyst coupled with lattice oxygen activated CoNiO2 for accelerating the oxygen evolution reaction. J Mater Chem A 2022;10:25692-700.

5. Kumar P, Al-Attas TA, Hu J, Kibria MG. Single atom catalysts for selective methane oxidation to oxygenates. ACS Nano 2022;16:8557-618.

6. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chemical synthesis of single atomic site catalysts. Chem Rev 2020;120:11900-55.

7. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

8. Chen Y, He T, Liu Q, et al. Highly durable iron single-atom catalysts for low-temperature zinc-air batteries by electronic regulation of adjacent iron nanoclusters. Appl Catal B Environ 2023;323:122163.

9. Wang S, Wang J. Single atom cobalt catalyst derived from co-pyrolysis of vitamin B12 and graphitic carbon nitride for PMS activation to degrade emerging pollutants. Appl Catal B Environ 2023;321:122051.

10. Jin H, Cui P, Cao C, et al. Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catal 2023;13:1316-25.

11. Zhang X, Guo J, Guan P, et al. Catalytically active single-atom niobium in graphitic layers. Nat Commun 2013;4:1924.

12. Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 2015;14:937-42.

13. Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 2018;11:893-903.

14. Zheng T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019;3:265-78.

15. Zhang R, Jiao L, Yang W, Wan G, Jiang H. Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction. J Mater Chem A 2019;7:26371-7.

16. He C, Wu Z, Zhao L, et al. Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal 2019;9:7311-7.

17. Fei H, Dong J, Arellano-Jiménez MJ, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 2015;6:8668.

18. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017;551:605-8.

19. Lang R, Du X, Huang Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chem Rev 2020;120:11986-2043.

20. Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-atom catalysts across the periodic table. Chem Rev 2020;120:11703-809.

21. Yang H, Shang L, Zhang Q, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun 2019;10:4585.

22. Wei H, Huang K, Wang D, et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat Commun 2017;8:1490.

23. Ge X, Zhou P, Zhang Q, et al. Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew Chem Int Ed 2020;59:232-6.

24. Li Y, Hao J, Song H, et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat Commun 2019;10:2359.

25. Li H, Wang L, Dai Y, et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat Nanotechnol 2018;13:411-7.

26. Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 2016;55:10800-5.

27. Ma R, Cui X, Wang Y, et al. Pyrolysis-free synthesis of single-atom cobalt catalysts for efficient oxygen reduction. J Mater Chem A 2022;10:5918-24.

28. Yang HB, Hung S, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy 2018;3:140-7.

29. Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 2017;56:6937-41.

30. Wei S, Wang Y, Chen W, et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem Sci 2019;11:786-90.

31. Chen Y, Ji S, Sun W, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed 2020;59:1295-301.

32. Yoo M, Yu Y, Ha H, et al. A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ Sci 2020;13:1231-9.

33. Chen Y, Ji S, Zhao S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun 2018;9:5422.

34. Xiong Y, Dong J, Huang ZQ, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol 2020;15:390-7.

35. Beniya A, Higashi S. Towards dense single-atom catalysts for future automotive applications. Nat Catal 2019;2:590-602.

36. Riley C, Zhou S, Kunwar D, et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J Am Chem Soc 2018;140:12964-73.

37. Kwon Y, Kim TY, Kwon G, Yi J, Lee H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J Am Chem Soc 2017;139:17694-9.

38. Park J, Lee S, Kim HE, et al. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew Chem Int Ed 2019;58:16038-42.

39. Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew Chem Int Ed 2019;58:1163-7.

40. Fan L, Liu PF, Yan X, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 2016;7:10667.

41. Zhang L, Fischer JMTA, Jia Y, et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc 2018;140:10757-63.

42. Zhang L, Jia Y, Liu H, et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew Chem Int Ed 2019;58:9404-8.

43. Shi Y, Huang WM, Li J, et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat Commun 2020;11:4558.

44. Li R, Li Y, Yang P, et al. Electrodeposition: synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J Energy Chem 2021;57:547-66.

45. Tavakkoli M, Holmberg N, Kronberg R, et al. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal 2017;7:3121-30.

46. Zhang L, Han L, Liu H, Liu X, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed 2017;56:13694-8.

47. Zhang Z, Feng C, Liu C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat Commun 2020;11:1215.

48. Han Y, Wang YG, Chen W, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J Am Chem Soc 2017;139:17269-72.

49. Sun T, Zhao S, Chen W, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc Natl Acad Sci USA 2018;115:12692-7.

50. Rao P, Wu D, Qin Y, et al. Facile fabrication of single-atom catalysts by a plasma-etching strategy for oxygen reduction reaction. J Mater Chem A 2022;10:6531-7.

51. Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 2015;54:14031-5.

52. Wang B, Wang X, Zou J, et al. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett 2017;17:2003-9.

53. Li A, Kan E, Chen S, et al. Enabling high loading in single-atom catalysts on bare substrate with chemical scissors by saturating the anchoring sites. Small 2022;18:e2200073.

54. Kim YH, Heo JS, Kim TH, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 2012;489:128-32.

55. Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016;352:797-800.

56. Li T, Liu J, Song Y, Wang F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal 2018;8:8450-8.

57. Zhou J, Duo F, Jia C, Zhou Y, Wang C, Wei Z. Photochemical solid-phase in situ anchoring of single atoms Ag/g-C3N4 for enhanced photocatalytic activity. Environ Eng Sci 2021;38:1098-107.

58. Lu X, Guo C, Zhang M, et al. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Res 2021;14:4347-55.

59. Fonseca J, Lu J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal 2021;11:7018-59.

60. Liu L, Corma A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat Rev Mater 2021;6:244-63.

61. Cheng N, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 2016;7:13638.

62. Parsons GN, Clark RD. Area-selective deposition: fundamentals, applications, and future outlook. Chem Mater 2020;32:4920-53.

63. Cao K, Cai J, Chen R. Inherently selective atomic layer deposition and applications. Chem Mater 2020;32:2195-207.

64. Zhang L, Banis MN, Sun X. Single-atom catalysts by the atomic layer deposition technique. Natl Sci Rev 2018;5:628-30.

65. Cao L, Liu W, Luo Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019;565:631-5.

66. Wang X, Jin B, Jin Y, Wu T, Ma L, Liang X. Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions. ACS Appl Nano Mater 2020;3:2867-74.

67. Fei H, Dong J, Wan C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater 2018;30:e1802146.

68. Ding S, Guo Y, Hülsey MJ, et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019;5:3207-19.

69. Cai M, Wu Z, Li Z, et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat Energy 2021;6:807-14.

70. Wang F, Chen H, Sun X, et al. Single atom Fe in favor of carbon disulfide (CS2) adsorption and thus the removal efficiency. Sep Purif Technol 2021;258:118086.

71. Tieu P, Yan X, Xu M, Christopher P, Pan X. Directly probing the local coordination, charge state, and stability of single atom catalysts by advanced electron microscopy: a review. Small 2021;17:e2006482.

72. Schilling AC, Groden K, Simonovis JP, et al. Accelerated Cu2O reduction by single Pt atoms at the metal-oxide interface. ACS Catal 2020;10:4215-26.

73. Lovejoy TC, Ramasse QM, Falke M, et al. Single atom identification by energy dispersive X-ray spectroscopy. Appl Phys Lett 2012;100:154101.

74. Zhang J, Wu X, Cheong WC, et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat Commun 2018;9:1002.

75. Kraushofer F, Resch N, Eder M, et al. Surface reduction state determines stabilization and incorporation of Rh on α-Fe2O3 (11¯02). Adv Mater Interfaces 2021;8:2001908.

76. Patel DA, Hannagan RT, Kress PL, Schilling AC, Çınar V, Sykes ECH. Atomic-scale surface structure and CO tolerance of NiCu single-atom alloys. J Phys Chem C 2019;123:28142-7.

77. Xu J, Li X, Liu X, Liu J. EELS analysis of Ce valence state of SiO2 supported CeO2 nanoparticles, CeOx nanoclusters and Ce single atoms. Microsc Microanal 2020;26:728-30.

78. Pan X, Yan X, Dai S, Xu M, Graham G. Directly probing local coordination, charge state and stability of single atom catalysts. Microsc Microanal 2020;26:2468-9.

79. Xu J, Wang Y, Wang D, Liu J. EELS analysis of two-dimensional Co3O4 and supported La single atoms. Microsc Microanal 2020;26:1762-3.

80. Abbas I, Kim H, Shin C, Yoon S, Jung K. Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis. Appl Catal B Environ 2019;258:117971.

81. Bafaqeer A, Tahir M, Amin NAS. Synthesis of hierarchical ZnV2O6 nanosheets with enhanced activity and stability for visible light driven CO2 reduction to solar fuels. Appl Surf Sci 2018;435:953-62.

82. Cao L, Luo Q, Liu W, et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat Catal 2019;2:134-41.

83. Banholzer MJ, Millstone JE, Qin L, Mirkin CA. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 2008;37:885-97.

84. Wei J, Qin SN, Yang J, et al. Probing single-atom catalysts and catalytic reaction processes by shell-isolated nanoparticle-enhanced raman spectroscopy. Angew Chem Int Ed 2021;60:9306-10.

85. Niu S, Yang J, Qi H, et al. Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction. J Energy Chem 2021;57:371-7.

86. Bai J, Tamura M, Nakayama A, Nakagawa Y, Tomishige K. Comprehensive study on Ni- or Ir-based alloy catalysts in the hydrogenation of olefins and mechanistic insight. ACS Catal 2021;11:3293-309.

87. Resasco J, Christopher P. Atomically dispersed Pt-group catalysts: reactivity, uniformity, structural evolution, and paths to increased functionality. J Phys Chem Lett 2020;11:10114-23.

88. Parkinson GS, Novotny Z, Argentero G, et al. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat Mater 2013;12:724-8.

89. Marcinkowski MD, Yuk SF, Doudin N, et al. Low-temperature oxidation of methanol to formaldehyde on a model single-atom catalyst: Pd atoms on Fe3O4(001). ACS Catal 2019;9:10977-82.

90. Liu K, Zhao X, Ren G, et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat Commun 2020;11:1263.

91. Tao FF, Ma Z. Water-gas shift on gold catalysts: catalyst systems and fundamental studies. Phys Chem Chem Phys 2013;15:15260-70.

92. Ding K, Gulec A, Johnson AM, et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015;350:189-92.

93. Spezzati G, Su Y, Hofmann JP, et al. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal 2017;7:6887-91.

94. Zhang Z, Wu Q, Johnson G, et al. Generalized synthetic strategy for transition-metal-doped brookite-phase TiO2 nanorods. J Am Chem Soc 2019;141:16548-52.

95. Hoang S, Guo Y, Binder AJ, et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat Commun 2020;11:1062.

96. Shen Q, Cao C, Huang R, et al. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew Chem Int Ed 2020;59:1216-9.

97. Shen G, Zhang R, Pan L, et al. Regulating the spin state of Fe(III) by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 2020;59:2313-7.

98. Hu P, Amghouz Z, Huang Z, Xu F, Chen Y, Tang X. Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ Sci Technol 2015;49:2384-90.

99. Hu P, Huang Z, Amghouz Z, et al. Electronic metal-support interactions in single-atom catalysts. Angew Chem Int Ed 2014;53:3418-21.

100. Chen Y, Kasama T, Huang Z, et al. Highly dense isolated metal atom catalytic sites: dynamic formation and in situ observations. Chemistry 2015;21:17397-402.

101. Zhang S, Nguyen L, Liang JX, et al. Catalysis on singly dispersed bimetallic sites. Nat Commun 2015;6:7938.

102. Nguyen L, Zhang S, Wang L, et al. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal 2016;6:840-50.

103. Wang L, Zhang S, Zhu Y, et al. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal 2013;3:1011-9.

104. Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc 2020;142:7425-33.

105. Zhou X, Shen Q, Yuan K, et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J Am Chem Soc 2018;140:554-7.

106. Zhou X, Yang W, Chen Q, et al. Stable Pt single atoms and nanoclusters on ultrathin CuO film and their performances in CO oxidation. J Phys Chem C 2016;120:1709-15.

107. Lang R, Li T, Matsumura D, et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew Chem Int Ed 2016;55:16054-8.

108. Yu WZ, Wang WW, Li SQ, et al. Construction of active site in a sintered copper-ceria nanorod catalyst. J Am Chem Soc 2019;141:17548-57.

109. Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem Rev 2020;120:12315-41.

110. Zhang C, Sha J, Fei H, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017;11:6930-41.

111. Tsounis C, Subhash B, Kumar PV, et al. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution. Adv Funct Mater 2022;32:2203067.

112. Song Z, Zhang L, Doyle-davis K, Fu X, Luo J, Sun X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv Energy Mater 2020;10:2001561.

113. Hu L, Li W, Wang L, Wang B. Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem 2021;3:100056.

114. Jiao L, Wan G, Zhang R, Zhou H, Yu SH, Jiang HL. From metal-organic frameworks to single-atom fe implanted n-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew Chem Int Ed 2018;57:8525-9.

115. Gong YN, Jiao L, Qian Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem Int Ed 2020;132:2727-31.

116. Liu J, Bak J, Roh J, et al. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal 2021;11:466-75.

117. Liu C, Pan G, Liang N, Hong S, Ma J, Liu Y. Ir single atom catalyst loaded on amorphous carbon materials with high HER activity. Adv Sci 2022;9:e2105392.

118. Liu J, Jiao M, Lu L, et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat Commun 2017;8:15938.

119. Zhao D, Shui JL, Grabstanowicz LR, et al. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv Mater 2014;26:1093-7.

120. Kattel S, Wang G. A density functional theory study of oxygen reduction reaction on Me-N4 (Me = Fe, Co, or Ni) clusters between graphitic pores. J Mater Chem A 2013;1:10790.

121. Holby EF, Wu G, Zelenay P, Taylor CD. Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first-principles modeling. J Phys Chem C 2014;118:14388-93.

122. Chen P, Zhou T, Xing L, et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed 2017;56:610-4.

123. Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev 2020;120:12217-314.

124. Li J, Zhang H, Samarakoon W, et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 Sites for oxygen reduction. Angew Chem Int Ed 2019;58:18971-80.

125. Li J, Chen S, Yang N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed 2019;58:7035-9.

126. He F, Li K, Yin C, Wang Y, Tang H, Wu Z. Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. Carbon 2017;114:619-27.

127. Xiao M, Zhu J, Li G, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew Chem Int Ed 2019;58:9640-5.

128. Wang C, Kim J, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020;6:19-40.

129. He Y, Hwang S, Cullen DA, et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ Sci 2019;12:250-60.

130. Xiong X, Li Y, Jia Y, et al. Ultrathin atomic Mn-decorated formamide-converted N-doped carbon for efficient oxygen reduction reaction. Nanoscale 2019;11:15900-6.

131. Yang Y, Mao K, Gao S, et al. O-, N-atoms-coordinated Mn Cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv Mater 2018;30:e1801732.

132. Guo Z, Cheng S, Cometto C, et al. Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J Am Chem Soc 2016;138:9413-6.

133. Huan TN, Ranjbar N, Rousse G, et al. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study. ACS Catal 2017;7:1520-5.

134. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc 2017;139:18093-100.

135. Zhang Z, Xiao J, Chen XJ, et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew Chem Int Ed 2018;57:16339-42.

136. Mou K, Chen Z, Zhang X, et al. Highly efficient electroreduction of CO2 on Nickel single-atom catalysts: atom trapping and nitrogen anchoring. Small 2019;15:e1903668.

137. Yan L, Liang XD, Sun Y, et al. Evolution of Cu single atom catalysts to nanoclusters during CO2 reduction to CO. Chem Commun 2022;58:2488-91.

138. Varela AS, Ranjbar Sahraie N, Steinberg J, Ju W, Oh HS, Strasser P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew Chem Int Ed 2015;54:10758-62.

139. Hu X, Hval HH, Bjerglund ET, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal 2018;8:6255-64.

140. Lü F, Zhao S, Guo R, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019;61:420-7.

141. Liu Y, Xu Q, Fan X, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions. J Mater Chem A 2019;7:26358-63.

142. Qin Q, Heil T, Antonietti M, Oschatz M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018;2:1800202.

143. Zheng J, Liao F, Wu S, et al. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew Chem Int Ed 2019;58:17335-41.

144. Tao H, Choi C, Ding L, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019;5:204-14.

145. Yu B, Li H, White J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv Funct Mater 2020;30:1905665.

146. Lu B, Guo L, Wu F, et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat Commun 2019;10:631.

147. Li X, Liu H, Chen Z, et al. Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation. Nat Commun 2019;10:1409.

148. Gobbi M, Bonacchi S, Lian JX, et al. Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nat Commun 2017;8:14767.

149. Wang ZL, Hao XF, Jiang Z, et al. C and N Hybrid Coordination Derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 2015;137:15070-3.

150. Deng J, Li H, Xiao J, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 2015;8:1594-601.

151. Ling C, Shi L, Ouyang Y, Zeng XC, Wang J. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett 2017;17:5133-9.

152. Ye S, Luo F, Zhang Q, et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ Sci 2019;12:1000-7.

153. Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew Chem Int Ed 2018;57:8614-8.

154. Lin J, Wang X. Rh single atom catalyst for direct conversion of methane to oxygenates. Sci China Mater 2018;61:758-60.

155. Wang Y, Zhang J, Shi WX, et al. W single-atom catalyst for CH4 photooxidation in water vapor. Adv Mater 2022;34:e2204448.

156. Tang X, Wang L, Yang B, et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl Catal B Environ 2021;285:119827.

157. Bai S, Liu F, Huang B, et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat Commun 2020;11:954.

158. Hai X, Xi S, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol 2022;17:174-81.

159. Xia C, Qiu Y, Xia Y, et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat Chem 2021;13:887-94.

160. Zhou Y, Tao X, Chen G, et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat Commun 2020;11:5892.

161. Gan T, Liu Y, He Q, Zhang H, He X, Ji H. Facile synthesis of kilogram-scale co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Sustain Chem Eng 2020;8:8692-9.

162. Gan T, He Q, Zhang H, et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem Eng J 2020;389:124490.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/