REFERENCES

1. Dresselhaus MS, Thomas IL. Alternative energy technologies. Nature 2001;414:332-7.

2. Weitemeyer S, Kleinhans D, Vogt T, Agert C. Integration of renewable energy sources in future power systems: the role of storage. Renew Energy 2015;75:14-20.

3. Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 2018;11:2696-767.

4. International Energy Agency. Net zero roadmap: a global pathway to keep the 1.5 °C goal in reach; Paris: IEA. 2023. Available from: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach [Last accessed on 13 Mar 2024].

5. Hirsh HS, Li Y, Tan DHS, Zhang M, Zhao E, Meng YS. Sodium-ion batteries paving the way for grid energy storage. Adv Energy Mater 2020;10:2001274.

6. Shang W, Yu W, Liu Y, et al. Rechargeable alkaline zinc batteries: progress and challenges. Energy Stor Mater 2020;31:44-57.

7. Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design. J Power Sources 2021;498:229762.

8. Huang H, Li D, Hou L, et al. Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress. J Power Sources 2022;542:231755.

9. Goodenough JB, Whittingham MS, Yoshino A. The Nobel prize in chemistry 2019. For the development of lithium-ion batteries. 2019. Available from: https://www.nobelprize.org/prizes/chemistry/2019/ [Last accessed on 13 Mar 2024].

10. Masias A, Marcicki J, Paxton WA. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 2021;6:621-30.

11. Wu J, Zhou T, Zhong B, Wang Q, Liu W, Zhou H. Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl Mater Interfaces 2022;14:27873-81.

12. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.

13. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev 2018;118:11433-56.

14. Yang Z, Zhang J, Kintner-Meyer MC, et al. Electrochemical energy storage for green grid. Chem Rev 2011;111:3577-613.

15. Badwal SP, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF. Emerging electrochemical energy conversion and storage technologies. Front Chem 2014;2:79.

16. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

17. Alotto P, Guarnieri M, Moro F. Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 2014;29:325-35.

18. Ravikumar MK, Rathod S, Jaiswal N, Patil S, Shukla A. The renaissance in redox flow batteries. J Solid State Electr 2017;21:2467-88.

19. Sánchez-Díez E, Ventosa E, Guarnieri M, et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage. J Power Sources 2021;481:228804.

20. Zeng YK, Zhao TS, An L, Zhou XL, Wei L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J Power Sources 2015;300:438-43.

21. Suttil JA, Kucharyson JF, Escalante-garcia IL, et al. Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries. J Mater Chem A 2015;3:7929-38.

22. Beh ES, De Porcellinis D, Gracia RL, Xia KT, Gordon RG, Aziz MJ. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett 2017;2:639-44.

23. Lourenssen K, Williams J, Ahmadpour F, Clemmer R, Tasnim S. Vanadium redox flow batteries: a comprehensive review. J Energy Stor 2019;25:100844.

24. Park M, Beh ES, Fell EM, et al. A high voltage aqueous zinc-organic hybrid flow battery. Adv Energy Mater 2019;9:1900694.

25. DOE office of ARPR-E. GRIDS program overview. Available from: https://arpa-e.energy.gov/sites/default/files/documents/files/GRIDS_ProgramOverview.pdf [Last accessed on 13 Mar 2024].

26. U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. Toxicological profile for vanadium. In: ATSDR’s toxicological profiles; Boca Raton, FL: CRC Press. 2012. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp58.pdf [Last accessed on 20 Mar 2024].

27. Wittman RM, Perry ML, Lambert TN, Chalamala BR, Preger Y. Perspective - on the need for reliability and safety studies of grid-scale aqueous batteries. J Electrochem Soc 2020;167:090545.

28. Park M, Ryu J, Wang W, Cho J. Material design and engineering of next-generation flow-battery technologies. Nat Rev Mater 2017;2:16080.

29. Rhodes Z, Cabrera-pardo JR, Li M, Minteer SD. Electrochemical advances in non-aqueous redox flow batteries. Isr J Chem 2021;61:101-12.

30. Kortekaas L, Fricke S, Korshunov A, Cekic-laskovic I, Winter M, Grünebaum M. Building bridges: unifying design and development aspects for advancing non-aqueous redox-flow batteries. Batteries 2023;9:4.

31. Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US. Redox-flow batteries: from metals to organic redox-active materials. Angew Chem Int Ed 2017;56:686-711.

32. Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K. Organic batteries for a greener rechargeable world. Nat Rev Mater 2023;8:54-70.

33. Ding Y, Zhang C, Zhang L, Zhou Y, Yu G. Molecular engineering of organic electroactive materials for redox flow batteries. Chem Soc Rev 2018;47:69-103.

34. Shrestha A, Hendriks KH, Sigman MS, Minteer SD, Sanford MS. Realization of an asymmetric non-aqueous redox flow battery through molecular design to minimize active species crossover and decomposition. Chemistry 2020;26:5369-73.

35. Perry ML, Saraidaridis JD, Darling RM. Crossover mitigation strategies for redox-flow batteries. Curr Opin Electrochem 2020;21:311-8.

36. Doris SE, Ward AL, Baskin A, et al. Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew Chem Int Ed 2017;56:1595-9.

37. Hendriks KH, Robinson SG, Braten MN, et al. High-performance oligomeric catholytes for effective macromolecular separation in nonaqueous redox flow batteries. ACS Cent Sci 2018;4:189-96.

38. Tsehaye MT, Mourouga G, Schmidt TJ, et al. Towards optimized membranes for aqueous organic redox flow batteries: correlation between membrane properties and cell performance. Renew Sustain Energy Rev 2023;173:113059.

39. Robb BH, George TY, Davis CM, et al. Sulfonated diels-alder poly(phenylene) membrane for efficient ion-selective transport in aqueous metalorganic and organic redox flow batteries. J Electrochem Soc 2023;170:030515.

40. Mazumder MMR, Jadhav RG, Minteer SD. Phenyl acrylate-based cross-linked anion exchange membranes for non-aqueous redox flow batteries. ACS Mater Au 2023;3:557-68.

41. Navalpotro P, Sierra N, Trujillo C, Montes I, Palma J, Marcilla R. Exploring the versatility of membrane-free battery concept using different combinations of immiscible redox electrolytes. ACS Appl Mater Interfaces 2018;10:41246-56.

42. Potash RA, Mckone JR, Conte S, Abruña HD. On the benefits of a symmetric redox flow battery. J Electrochem Soc 2016;163:A338-44.

43. Janoschka T, Friebe C, Hager MD, Martin N, Schubert US. An approach toward replacing vanadium: a single organic molecule for the anode and cathode of an aqueous redox-flow battery. ChemistryOpen 2017;6:216-20.

44. Chen R. Redox flow batteries: mitigating cross-contamination via bipolar redox-active materials and bipolar membranes. Curr Opin Electrochem 2023;37:101188.

45. Li M, Case J, Minteer SD. Bipolar redox-active molecules in non-aqueous organic redox flow batteries: status and challenges. ChemElectroChem 2021;8:1215-32.

46. Kosswattaarachchi AM, Friedman AE, Cook TR. Characterization of a BODIPY dye as an active species for redox flow batteries. ChemSusChem 2016;9:3317-23.

47. Ma T, Pan Z, Miao L, et al. Porphyrin-based symmetric redox-flow batteries towards cold-climate energy storage. Angew Chem 2018;130:3212-6.

48. Geysens P, Li Y, Vankelecom I, Fransaer J, Binnemans K. Highly soluble 1,4-diaminoanthraquinone derivative for nonaqueous symmetric redox flow batteries. ACS Sustain Chem Eng 2020;8:3832-43.

49. Tracy JS, Horst ES, Roytman VA, Toste FD. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures. Chem Sci 2022;13:10806-14.

50. Liu Y, Dai G, Chen Y, et al. Effective design strategy of small bipolar molecules through fused conjugation toward 2.5 V based redox flow batteries. ACS Energy Lett 2022;7:1274-83.

51. Steen JS, Nuismer JL, Eiva V, et al. Blatter radicals as bipolar materials for symmetrical redox-flow batteries. J Am Chem Soc 2022;144:5051-8.

52. Hagemann T, Winsberg J, Häupler B, et al. A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery. NPG Asia Mater 2017;9:e340.

53. Hwang S, Kim H, Ryu JH, Oh SM. N-ferrocenylphthalimide; A single redox couple formed by attaching a ferrocene moiety to phthalimide for non-aqueous flow batteries. J Power Sources 2018;395:60-5.

54. Friedl J, Lebedeva MA, Porfyrakis K, Stimming U, Chamberlain TW. All-fullerene-based cells for nonaqueous redox flow batteries. J Am Chem Soc 2018;140:401-5.

55. Hwang S, Kim H, Ryu JH, Oh SM. N-(α-ferrocenyl)ethylphthalimide as a single redox couple for non-aqueous flow batteries. J Power Sources 2019;421:1-5.

56. Zhen Y, Zhang C, Yuan J, Zhao Y, Li Y. Ferrocene/anthraquinone based bi-redox molecule for symmetric nonaqueous redox flow battery. J Power Sources 2020;480:229132.

57. Xu D, Zhang C, Zhen Y, Li Y. Ferrocene/phthalimide ionic bipolar redox-active molecule for symmetric nonaqueous redox flow batteries. ACS Appl Energy Mater 2021;4:8045-51.

58. Liu B, Tang CW, Sheong FK, Jia G, Zhao T. Artificial bipolar redox-active molecule for symmetric nonaqueous redox flow batteries. ACS Sustain Chem Eng 2022;10:613-21.

59. Nambafu GS, Delmo EP, Bin Shahid U, et al. Pyromellitic diimide based bipolar molecule for total organic symmetric redox flow battery. Nano Energy 2022;94:106963.

60. Etkind SI, Lopez J, Zhu YG, et al. Thianthrene-based bipolar redox-active molecules toward symmetric all-organic batteries. ACS Sustain Chem Eng 2022;10:11739-50.

61. Duan W, Vemuri RS, Milshtein JD, et al. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR. J Mater Chem A 2016;4:5448-56.

62. Charlton GD, Barbon SM, Gilroy JB, Dyker CA. A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery. J Energy Chem 2019;34:52-6.

63. Armstrong CG, Hogue RW, Toghill KE. Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes. J Power Sources 2019;440:227037.

64. Raihan M, Dyker CA. Ester-substituted bispyridinylidenes: double concerted two-electron bipolar molecules for symmetric organic redox flow batteries. ACS Energy Lett 2023;8:3314-22.

65. Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US. TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett 2016;1:976-80.

66. Dmello R, Milshtein JD, Brushett FR, Smith KC. Cost-driven materials selection criteria for redox flow battery electrolytes. J Power Sources 2016;330:261-72.

67. Sentyurin VV, Levitskiy OA, Magdesieva TV. Molecular design of ambipolar redox-active molecules II: closed-shell systems. Curr Opin Electrochem 2020;24:6-14.

68. Sentyurin VV, Levitskiy OA, Magdesieva TV. Molecular design of ambipolar redox-active open-shell molecules: principles and implementations. Curr Opin Electrochem 2020;24:15-23.

69. Steen JS, de Vries F, Hjelm J, Otten E. Bipolar verdazyl radicals for symmetrical batteries: properties and stability in all states of charge. Chemphyschem 2023;24:e202200779.

70. Broere DL, Plessius R, van der Vlugt JI. New avenues for ligand-mediated processes--expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem Soc Rev 2015;44:6886-915.

71. Romero NA, Nicewicz DA. Organic photoredox catalysis. Chem Rev 2016;116:10075-166.

72. Laursen BW, Krebs FC, Nielsen MF, Bechgaard K, Christensen JB, Harrit N. 2,6,10-Tris(dialkylamino)trioxatriangulenium ions. Synthesis, structure, and properties of exceptionally stable carbenium ions. J Am Chem Soc 1998;120:12255-63.

73. Nicolas C, Lacour J. Triazatriangulenium cations: highly stable carbocations for phase-transfer catalysis. Org Lett 2006;8:4343-6.

74. Goodman H, Mei L, Gianetti TL. Molecular orbital insights of transition metal-stabilized carbocations. Front Chem 2019;7:365.

75. Wilkins LC, Kim Y, Litle ED, Gabbaï FP. Stabilized carbenium ions as latent, Z-type ligands. Angew Chem Int Ed 2019;131:18434-8.

76. Mei L, Veleta JM, Bloch J, et al. Tunable carbocation-based redox active ambiphilic ligands: synthesis, coordination and characterization. Dalton Trans 2020;49:16095-105.

77. Litle ED, Wilkins LC, Gabbaï FP. Ligand-enforced intimacy between a gold cation and a carbenium ion: impact on stability and reactivity. Chem Sci 2021;12:3929-36.

78. Karimi M, Borthakur R, Dorsey CL, Chen CH, Lajeune S, Gabbaï FP. Bifunctional carbenium dications as metal-free catalysts for the reduction of oxygen. J Am Chem Soc 2020;142:13651-6.

79. Shaikh AC, Veleta JM, Moutet J, Gianetti TL. Trioxatriangulenium (TOTA+) as a robust carbon-based Lewis acid in frustrated Lewis pair chemistry. Chem Sci 2021;12:4841-9.

80. Mei L, Veleta JM, Gianetti TL. Helical carbenium ion: a versatile organic photoredox catalyst for red-light-mediated reactions. J Am Chem Soc 2020;142:12056-61.

81. Mei L, Gianetti T. Helical carbenium ion-based organic photoredox catalyst: a versatile and sustainable option in red-light-induced reactions. Synlett 2021;32:337-4.

82. Mei L, Moutet J, Stull SM, Gianetti TL. Synthesis of CF3-containing spirocyclic indolines via a red-light-mediated trifluoromethylation/dearomatization cascade. J Org Chem 2021;86:10640-53.

83. Hossain MM, Shaikh AC, Moutet J, Gianetti TL. Photocatalytic α-arylation of cyclic ketones. Nat Synth 2022;1:147-57.

84. Nowack MH, Moutet J, Laursen BW, Gianetti TL. Triangulenium ions: versatile organic photoredox catalysts for green-light-mediated reactions. Synlett 2024;35:307-12.

85. Singh PP, Singh J, Srivastava V. Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications. RSC Adv 2023;13:10958-86.

86. Žurauskas J, Boháčová S, Wu S, et al. Electron-poor acridones and acridiniums as super photooxidants in molecular photoelectrochemistry by unusual mechanisms. Angew Chem Int Ed 2023;62:e202307550.

87. Moutet J, Nowack MH, Mills DD, Lozier DL, Laursen BW, Gianetti TL. Planar carbenium ions for robust symmetrical all organic redox flow batteries. Mater Adv 2023;4:4598-606.

88. Bosson J, Bisballe N, Laursen BW, Lacour J. Chapter 4: cationic triarylcarbenium helicenes: synthesis, resolution, and applications. Weinheim, Germany: Wiley; 2022. pp. 127-65.

89. Herse C, Bas D, Krebs FC, et al. A highly configurationally stable [4]heterohelicenium cation. Angew Chem Int Ed 2003;42:3162-6.

90. Laleu B, Mobian P, Herse C, et al. Resolution of [4]heterohelicenium dyes with unprecedented Pummerer-like chemistry. Angew Chem Int Ed 2005;44:1879-83.

91. Kel O, Sherin P, Mehanna N, Laleu B, Lacour J, Vauthey E. Excited-state properties of chiral [4]helicene cations. Photochem Photobiol Sci 2012;11:623-31.

92. Bosson J, Gouin J, Lacour J. Cationic triangulenes and helicenes: synthesis, chemical stability, optical properties and extended applications of these unusual dyes. Chem Soc Rev 2014;43:2824-40.

93. Wallabregue A, Sherin P, Guin J, Besnard C, Vauthey E, Lacour J. Modular synthesis of pH-sensitive fluorescent diaza[4]helicenes. Eur J Org Chem 2014;2014:6431-8.

94. Delgado IH, Pascal S, Wallabregue A, et al. Functionalized cationic [4]helicenes with unique tuning of absorption, fluorescence and chiroptical properties up to the far-red range. Chem Sci 2016;7:4685-93.

95. Li H, Voci S, Wallabregue A, et al. Efficient annihilation electrochemiluminescence of cationic helicene luminophores. ChemElectroChem 2017;4:1750-6.

96. Tarrieu R, Delgado IH, Zinna F, et al. Hybrids of cationic [4]helicene and N-heterocyclic carbene as ligands for complexes exhibiting (chir)optical properties in the far red spectral window. Chem Commun 2021;57:3793-6.

97. Sørensen TJ, Nielsen MF, Laursen BW. Synthesis and Stability of N,N′-Dialkyl-1,13-dimethoxyquinacridinium (DMQA+): a [4]helicene with multiple redox states. ChemPlusChem 2014;79:1030-5.

98. Shaikh AC, Moutet J, Veleta JM, et al. Persistent, highly localized, and tunable [4]helicene radicals. Chem Sci 2020;11:11060-7.

99. Moutet J, Veleta JM, Gianetti TL. Symmetric, robust, and high-voltage organic redox flow battery model based on a helical carbenium ion electrolyte. ACS Appl Energy Mater 2021;4:9-14.

100. Moutet J, Mills D, Hossain MM, Gianetti TL. Increased performance of an all-organic redox flow battery model via nitration of the [4]helicenium DMQA ion electrolyte. Mater Adv 2022;3:216-23.

101. Yan Y, Robinson SG, Sigman MS, Sanford MS. Mechanism-based design of a high-potential catholyte enables a 3.2 V all-organic nonaqueous redox flow battery. J Am Chem Soc 2019;141:15301-6.

102. Antoni PW, Bruckhoff T, Hansmann MM. Organic redox systems based on pyridinium-carbene hybrids. J Am Chem Soc 2019;141:9701-11.

103. Mobian P, Nicolas C, Francotte E, Bürgi T, Lacour J. Synthesis, resolution, and VCD analysis of an enantiopure diazaoxatricornan derivative. J Am Chem Soc 2008;130:6507-14.

104. Gong K, Fang Q, Gu S, Li SFY, Yan Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy Environ Sci 2015;8:3515-30.

105. Korshunov A, Milner MJ, Grünebaum M, Studer A, Winter M, Cekic-laskovic I. An oxo-verdazyl radical for a symmetrical non-aqueous redox flow battery. J Mater Chem A 2020;8:22280-91.

106. Laursen BW, Sørensen TJ. Synthesis of super stable triangulenium dye. J Org Chem 2009;74:3183-5.

107. Bisballe N, Laursen BW. What is best strategy for water soluble fluorescence dyes? A case study using long fluorescence lifetime DAOTA dyes. Chemistry 2020;26:15969-76.

108. Moutet J, Mills DD, Lozier DL, Gianetti TL. [4]helicenium ion as bipolar redox material for symmetrical fully organic pole-less redox flow battery. Batteries Supercaps 2024:e202300519.

109. Helicenes: synthesis, properties and applications. Crassous J, Stará IG, Starý I, editors. Weinheim, Germany: Wiley; 2022. pp. 1-542.

110. Torricelli F, Bosson J, Besnard C, Chekini M, Bürgi T, Lacour J. Modular synthesis, orthogonal post-functionalization, absorption, and chiroptical properties of cationic [6]helicenes. Angew Chem Int Ed 2013;52:1796-800.

111. Yao Y, Lei J, Shi Y, Ai F, Lu Y. Assessment methods and performance metrics for redox flow batteries. Nat Energy 2021;6:582-8.

112. Wang H, Sayed SY, Luber EJ, et al. Redox flow batteries: how to determine electrochemical kinetic parameters. ACS Nano 2020;14:2575-84.

113. Nicholson RS. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 1965;37:1351-5.

114. Lavagnini I, Antiochia R, Magno F. An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 2004;16:505-6.

115. Cavallotti C, Derudi M, Rota R. On the mechanism of decomposition of the benzyl radical. Proc Combust Inst 2009;32:115-21.

116. Yao Z, Lum Y, Johnston A, et al. Machine learning for a sustainable energy future. Nat Rev Mater 2023;8:202-15.

117. Ling C. A review of the recent progress in battery informatics. NPJ Comput Mater 2022;8:33.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/