REFERENCES

1. Zhu M, Schmidt OG. Tiny robots and sensors need tiny batteries-here’s how to do it. Nature 2021;589:195-7.

2. Yu L, Li W, Wei C, Yang Q, Shao Y, Sun J. 3D printing of NiCoP/Ti3C2MXene architectures for energy storage devices with high areal and volumetric energy density. Nanomicro Lett 2020;12:143.

3. Jin J, Geng X, Chen Q, Ren TL. A better Zn-Ion storage device: recent progress for Zn-Ion hybrid supercapacitors. Nanomicro Lett 2022;14:64.

4. Hur JI, Smith LC, Dunn B. High areal energy density 3D lithium-ion microbatteries. Joule 2018;2:1187-201.

5. Zhang P, Wang F, Yu M, Zhuang X, Feng X. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev 2018;47:7426-51.

6. Pan X, Hong X, Xu L, Li Y, Yan M, Mai L. On-chip micro/nano devices for energy conversion and storage. Nano Today 2019;28:100764.

7. Liu H, Zhang G, Zheng X, Chen F, Duan H. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. Int J Extrem Manuf 2020;2:042001.

8. Jia R, Shen G, Qu F, Chen D. Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics. Energy Stor Mater 2020;27:169-86.

9. Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 2018;47:5919-45.

10. Chang Kim M, Saeed G, Alam A, et al. Ultrafine nanoparticles of tin-cobalt-sulfide decorated over 2D MXene sheets as a cathode material for high-performance asymmetric supercapacitor. J Ind Eng Chem 2023;124:294-303.

11. Zhang L, Yu L, Li OL, et al. FeF3·0.33H2O@C nanocomposites derived from pomegranate structure as high-performance cathodes for sodium- and lithium-ion batteries. Jops 2022;547:232014.

12. Yu L, Kim KS, Saeed G, Kang J, Kim KH. Hybrid ZnSe-SnSe2 nanoparticles embedded in N-doped carbon nanocube heterostructures with enhanced and ultra-stable lithium-storage performance. ChemElectroChem 2021;8:4732-44.

13. Brown E, Yan P, Tekik H, et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater Design 2019;170:107689.

14. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 2018;8:1703137.

15. Zhu Z, Kan R, Hu S, et al. Recent advances in high-performance microbatteries: construction, application, and perspective. Small 2020;16:e2003251.

16. Zhang L, Liu D, Wu Z, Lei W. Micro-supercapacitors powered integrated system for flexible electronics. Energy Stor Mater 2020;32:402-17.

17. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013;5:263-75.

18. Peng X, Peng L, Wu C, Xie Y. Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 2014;43:3303-23.

19. Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun 2015;51:15880-93.

20. Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015;9:9451-69.

21. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

22. Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005;438:201-4.

23. Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun 2014;5:5678.

24. Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev 2016;45:2740-55.

25. Qiu L, He Z, Li D. Multifunctional cellular materials Based on 2D nanomaterials: prospects and challenges. Adv Mater 2018;30:1704850.

26. Garg R, Agarwal A, Agarwal M. A review on MXene for energy storage application: effect of interlayer distance. Mater Res Express 2020;7:022001.

27. Li K, Liang M, Wang H, et al. 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater 2020;30:2000842.

28. Talaie E, Bonnick P, Sun X, Pang Q, Liang X, Nazar LF. Methods and protocols for electrochemical energy storage materials research. Chem Mater 2017;29:90-105.

29. Zhou X, Cao A, Wan L, Guo Y. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res 2012;5:845-53.

30. Zheng S, Shi X, Das P, Wu ZS, Bao X. The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv Mater 2019;31:e1900583.

31. Wang Z, Chen Y, Zhou Y, Ouyang J, Xu S, Wei L. Miniaturized lithium-ion batteries for on-chip energy storage. Nanoscale Adv 2022;4:4237-57.

32. Zhang W, Liu H, Zhang X, Li X, Zhang G, Cao P. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv Funct Mater 2021;31:2104909.

33. Jabbar Khan A, Mateen A, Khan S, et al. 3D printed micro-electrochemical energy storage devices. Batteries Supercaps 2023;6:e202300190.

34. Bounor B, Asbani B, Douard C, Favier F, Brousse T, Lethien C. On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Stor Mater 2021;38:520-7.

35. Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010;4:4324-30.

36. Xiong C, Li B, Lin X, et al. The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Compos Part B-Eng 2019;165:10-46.

37. Ashby DS, Deblock RH, Lai C, Choi CS, Dunn BS. Patternable, solution-processed ionogels for thin-film lithium-ion electrolytes. Joule 2017;1:344-58.

38. Alam A, Saeed G, Kim KH, Lim S. Metal-organic framework-derived NiS@Cobalt-Molybdenum layered double hydroxides shell@core as cathode and CoFe2O4-nanoparticles@MXene shell@core as anode materials for ultra-high energy-density flexible asymmetric supercapacitor. J Energy Stor 2022;55:105592.

39. Soram BS, Dai JY, Thangjam IS, Kim NH, Lee JH. One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. J Mater Chem A 2020;8:24040-52.

40. Wang L, Wang Q, Jia W, Chen S, Gao P, Li J. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J Power Sources 2017;342:175-82.

41. Gandla D, Tan DQ. Progress report on atomic layer deposition toward hybrid nanocomposite electrodes for next generation supercapacitors. Adv Mater Inter 2019;6:1900678.

42. Saeed G, Kumar S, Kim NH, Lee JH. Fabrication of 3D graphene-CNTs/α-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life. Chem Eng J 2018;352:268-76.

43. Lobe S, Bauer A, Uhlenbruck S, Fattakhova-Rohlfing D. Physical vapor deposition in solid-state battery development: from materials to devices. Adv Sci 2021;8:e2002044.

44. Zeng L, Li P, Yao Y, Niu B, Niu S, Xu B. Recent progresses of 3D printing technologies for structural energy storage devices. Mater Today Nano 2020;12:100094.

45. Zhang F, Wei M, Viswanathan VV, et al. 3D printing technologies for electrochemical energy storage. Nano Energy 2017;40:418-31.

46. Egorov V, Gulzar U, Zhang Y, Breen S, O'Dwyer C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv Mater 2020;32:e2000556.

47. Cheng M, Deivanayagam R, Shahbazian-yassar R. 3D printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batteries Supercaps 2020;3:130-46.

48. Gao T, Zhou Z, Yu J, et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv Energy Mater 2019;9:1802578.

49. Guo B, Liang G, Yu S, Wang Y, Zhi C, Bai J. 3D printing of reduced graphene oxide aerogels for energy storage devices: a paradigm from materials and technologies to applications. Energy Stor Mater 2021;39:146-65.

50. Guo H, Lv R, Bai S. Recent advances on 3D printing graphene-based composites. Nano Mater Sci 2019;1:101-15.

51. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z. Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2019;2:1-33.

52. Pang Y, Cao Y, Chu Y, et al. Additive manufacturing of batteries. Adv Funct Mater 2020;30:1906244.

53. Tagliaferri S, Panagiotopoulos A, Mattevi C. Direct ink writing of energy materials. Mater Adv 2021;2:540-63.

54. Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K. Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater 2017;7:1700127.

55. Xu X, Tan YH, Ding J, Guan C. 3D printing of next-generation electrochemical energy storage devices: from multiscale to multimaterial. Energy Environ Mater 2022;5:427-38.

56. Zhu C, Liu T, Qian F, et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017;15:107-20.

57. Yao B, Chandrasekaran S, Zhang J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019;3:459-70.

58. Zeng L, Ling S, Du D, He H, Li X, Zhang C. Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview. Adv Sci 2023;10:2303716.

59. Wei M, Zhang F, Wang W, Alexandridis P, Zhou C, Wu G. 3D direct writing fabrication of electrodes for electrochemical storage devices. Jops 2017;354:134-47.

60. Lyu Z, Lim GJ, Koh JJ, et al. Design and manufacture of 3D-printed batteries. Joule 2021;5:89-114.

61. Kim H, Johnson J, Chavez LA, Garcia Rosales CA, Tseng TB, Lin Y. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram Int 2018;44:9037-44.

62. Maurel A, Russo R, Grugeon S, Panier S, Dupont L. Environmentally friendly lithium-terephthalate/polylactic acid composite filament formulation for lithium-ion battery 3D-printing via fused deposition modeling. ECS J Solid State Sci Technol 2021;10:037004.

63. Sztymela K, Bienia M, Rossignol F, et al. Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges. Heliyon 2022;8:e12623.

64. Pei M, Shi H, Yao F, et al. 3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures. J Mater Chem A 2021;9:25237-57.

65. Gulzar U, Glynn C, O'dwyer C. Additive manufacturing for energy storage: methods, designs and material selection for customizable 3d printed batteries and supercapacitors. Curr Opin Electroche 2020;20:46-53.

66. Gokhare VG, Raut DN, Shinde DK. A review paper on 3D-printing aspects and various processes used in the 3D-printing. Available from: https://www.ijert.org/a-review-paper-on-3d-printing-aspects-and-various-processes-used-in-the-3d-printing [Last accessed on 7 Mar 2024].

67. Ge Q, Li Z, Wang Z, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extrem Manuf 2020;2:022004.

68. Katsuyama Y, Haba N, Kobayashi H, et al. Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv Funct Mater 2022;32:2201544.

69. Li L, Deng Z, Chen M, Yu ZZ, Russell TP, Zhang HB. 3D Printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett 2023;23:155-62.

70. Sahoo R, Pal A, Pal T. 2D materials for renewable energy storage devices: outlook and challenges. Chem Commun 2016;52:13528-42.

71. Dong Y, Wu ZS, Ren W, Cheng HM, Bao X. Graphene: a promising 2D material for electrochemical energy storage. Sci Bull 2017;62:724-40.

72. Wang L, Chen S, Shu T, Hu X. Functional Inks for printable energy storage applications based on 2D materials. ChemSusChem 2020;13:1330-53.

73. Naficy S, Jalili R, Aboutalebi SH, et al. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 2014;1:326-31.

74. Jiang Y, Guo F, Liu Y, Xu Z, Gao C. Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 2021;1:304-23.

75. Tian X. Direct ink writing of 2D material-based supercapacitors. 2D Mater 2022;9:012001.

76. Xie Y, Zhang H, Huang H, et al. High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy 2020;74:104928.

77. Zhu Y, Wang S, Ma J, Das P, Zheng S, Wu Z. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Stor Mater 2022;51:500-26.

78. Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019;10:1795.

79. Yang W, Yang J, Byun JJ, et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv Mater 2019;31:e1902725.

80. Akuzum B, Maleski K, Anasori B, et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 2018;12:2685-94.

81. Bao C, Zhang H, Wilkie CA, et al. On the dispersion systems of graphene-like two-dimensional materials: From fundamental laws to engineering guidelines. Carbon 2016;107:774-82.

82. García-Tuñón E, Feilden E, Zheng H, D'Elia E, Leong A, Saiz E. Graphene oxide: an all-in-one processing additive for 3D printing. ACS Appl Mater Interfaces 2017;9:32977-89.

83. Panagiotopoulos A, Nagaraju G, Tagliaferri S, et al. 3D printed inks of two-dimensional semimetallic MoS2 /TiS2 nanosheets for conductive-additive-free symmetric supercapacitors. J Mater Chem A 2023;11:16190-200.

84. Zhou G, Li M, Liu C, Wu Q, Mei C. 3D printed Ti3C2 TxMXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv Funct Mater 2022;32:2109593.

85. Tang X, Zhou H, Cai Z, et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018;12:3502-11.

86. Yao B, Chandrasekaran S, Zhang H, et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv Mater 2020;32:e1906652.

87. Zheng Y, Zhao W, Jia D, Cui L, Liu J. Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors. Chem Eng J 2019;364:70-8.

88. Zhu C, Liu T, Qian F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 2016;16:3448-56.

89. Chandrasekaran S, Yao B, Liu T, et al. Direct ink writing of organic and carbon aerogels. Mater Horiz 2018;5:1166-75.

90. Wang G, Wang H, Lu X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 2014;26:2676-82, 2615.

91. Wang Y, Zhang Y, Wang G, et al. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv Funct Mater 2020;30:1907284.

92. Nakhanivej P, Dou Q, Xiong P, Park HS. Two-dimensional pseudocapacitive nanomaterials for high-energy- and high-power-oriented applications of supercapacitors. ACC Mater Res 2021;2:86-96.

93. Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol 2017;12:7-15.

94. Kamboj N, Purkait T, Das M, Sarkar S, Hazra KS, Dey RS. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ Sci 2019;12:2507-17.

95. Jiang Y, Xu Z, Huang T, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv Funct Mater 2018;28:1707024.

96. Bhojane P. Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its understanding. J Energy Stor 2022;45:103654.

97. Kim HS, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 2017;16:454-60.

98. Wang Y, Wang M, Wang P, et al. Urea-treated wet-spun PEDOT: PSS fibers for achieving high-performance wearable supercapacitors. Compos Commun 2021;27:100885.

99. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014;7:1597.

100. Lai F, Miao YE, Huang Y, Zhang Y, Liu T. Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl Mater Interfaces 2016;8:3558-66.

101. Saeed G, Bandyopadhyay P, Kumar S, Kim NH, Lee JH. ZnS-Ni7S6 nanosheet arrays wrapped with nanopetals of Ni(OH)2 as a novel core-shell electrode material for asymmetric supercapacitors with high energy density and cycling stability performance. ACS Appl Mater Interfaces 2020;12:47377-88.

102. Alam A, Saeed G, Lim S. One-step synthesis of 2D-2D Co(OH)2-MoSe2 hybrid nanosheets as an efficient electrode material for high-performance asymmetric supercapacitor. J Electroanal Chem 2020;879:114775.

103. Kumar KS, Choudhary N, Jung Y, Thomas J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett 2018;3:482-95.

104. Zong W, Ouyang Y, Miao YE, Liu T, Lai F. Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices. Chem Commun 2022;58:2075-95.

105. Huang X, Huang J, Yang D, Wu P. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Adv Sci 2021;8:e2101664.

106. Yao B, Peng H, Zhang H, et al. Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett 2021;21:3731-7.

107. Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu Z. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater 2019;9:1901839.

108. Orangi J, Hamade F, Davis VA, Beidaghi M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020;14:640-50.

109. Sadavar S, Wang KJ, Kang T, et al. Anion storage for hybrid supercapacitor. Mater Today Energy 2023;37:101388.

110. Zhao J, Zhang Y, Lu H, et al. Additive manufacturing of two-dimensional conductive metal-organic framework with multidimensional hybrid architectures for high-performance energy storage. Nano Lett 2022;22:1198-206.

111. Yang Z, Yang X, Yang T, et al. 3D printing of carbon tile-modulated well-interconnected hierarchically porous pseudocapacitive electrode. Energy Stor Mater 2023;54:51-9.

112. Zhao J, Zhang Y, Zhao X, et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv Funct Mater 2019;29:1900809.

113. Zhang C, Kremer MP, Seral-ascaso A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater 2018;28:1705506.

114. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P. Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 2022;5:1537-47.

115. Pender JP, Jha G, Youn DH, et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020;14:1243-95.

116. Chen C, Jiang M, Zhou T, et al. Interface aspects in all-solid-state Li-based batteries reviewed. Adv Energy Mater 2021;11:2003939.

117. Imanishi N, Yamamoto O. Rechargeable lithium-air batteries: characteristics and prospects. Mater Today 2014;17:24-30.

118. Yang R, Zhou J, Yang C, Qiu L, Cheng H. Recent progress in 3D printing of 2D material-based macrostructures. Adv Mater Tech 2020;5:1901066.

119. Ye J, Baumgaertel AC, Wang YM, Biener J, Biener MM. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. ACS Nano 2015;9:2194-202.

120. Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 2011;6:277-81.

121. Hassan K, Nine MJ, Tung TT, et al. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale 2020;12:19007-42.

122. Sun C, Liu S, Shi X, Lai C, Liang J, Chen Y. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem Eng J 2020;381:122641.

123. Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF. Review on Li-sulfur battery systems: an integral perspective. Adv Energy Mater 2015;5:1500212.

124. Shen K, Mei H, Li B, Ding J, Yang S. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv Energy Mater 2018;8:1701527.

125. Chen C, Jiang J, He W, Lei W, Hao Q, Zhang X. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv Funct Mater 2020;30:1909469.

126. Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45.

127. Ma J, Zheng S, Zhou F, et al. All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density. Energy Stor Mater 2023;54:304-12.

128. Shen K, Cao Z, Shi Y, Zhang Y, Li B, Yang S. 3D printing lithium salt towards dendrite-free lithium anodes. Energy Stor Mater 2021;35:108-13.

129. Lyu Z, Lim GJ, Guo R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Stor Mater 2020;24:336-42.

130. Gao X, Yang X, Wang S, et al. A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li-Se batteries. J Mater Chem A 2020;8:278-86.

131. Cai J, Jin J, Fan Z, et al. 3D Printing of a V8C7-VO2 Bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv Mater 2020;32:e2005967.

132. Mubarak S, Dhamodharan D, Byun H. Recent advances in 3D printed electrode materials for electrochemical energy storage devices. J Energy Chem 2023;81:272-312.

133. Bu F, Li C, Wang Q, Liu X. Ultraviolet-assisted printing of flexible all-solid-state zinc batteries with enhanced interfacial bond. Chem Eng J 2022;449:137710.

134. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46:3529-614.

135. Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci 2020;13:4625-65.

136. Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 2020;120:7795-866.

137. Lourenssen K, Williams J, Ahmadpour F, Clemmer R, Tasnim S. Vanadium redox flow batteries: a comprehensive review. J Energy Stor 2019;25:100844.

138. Zhu Y, Peng L, Fang Z, Yan C, Zhang X, Yu G. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv Mater 2018;30:e1706347.

139. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science 2019;366:eaan8285.

140. Wang Z, Huang Z, Wang H, et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022;16:9105-16.

141. Li Q, Dong Q, Wang J, et al. Direct ink writing (DIW) of graphene aerogel composite electrode for vanadium redox flow battery. Jops 2022;542:231810.

142. Ma H, Tian X, Wang T, et al. Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable Zinc-Ion batteries. Small 2021;17:e2100746.

143. Yang H, Wang H, Li W, et al. A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel. J Mater Chem A 2022;10:16842-52.

144. Ma J, Zheng S, Chi L, et al. 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv Mater 2022;34:e2205569.

145. Yan J, Zhi G, Kong D, et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J Mater Chem A 2020;8:19843-54.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/